885 resultados para Lipid vectors
Resumo:
Oxidised low density lipoproteins (oxLDL) are key players in the development of atherosclerotic cardiovascular diseases. Since there are similarities between the pathogenesis of preeclampsia and atherosclerosis we hypothesised an increased accumulation of oxLDL at the materno-foetal and foeto-foetal interface within the placental tissue of preeclamptic women compared to women with normotensive pregnancies (controls). Moreover, we analysed maternal and foetal serum lipid parameters.
Resumo:
Sufficient oxygen supply is crucial for the development and physiology of mammalian cells and tissues. When simple diffusion of oxygen becomes inadequate to provide the necessary flow of substrate, evolution has provided cells with tools to detect and respond to hypoxia by upregulating the expression of specific genes, which allows an adaptation to hypoxia-induced stress conditions. The modulation of cell signaling by hypoxia is an emerging area of research that provides insight into the orchestration of cell adaptation to a changing environment. Cell signaling and adaptation processes are often accompanied by rapid and/or chronic remodeling of membrane lipids by activated lipases. This review highlights the bi-directional relation between hypoxia and lipid signaling mechanisms.
Resumo:
Fas (CD95/Apo-1) ligand-mediated apoptosis induction of target cells is one of the major effector mechanisms by which cytotoxic lymphocytes (T cells and natural killer cells) kill their target cells. In T cells, Fas ligand expression is tightly regulated at a transcriptional level through the activation of a distinct set of transcription factors. Increasing evidence, however, supports an important role for posttranscriptional regulation of Fas ligand expression and activity. Lipid rafts are cholesterol- and sphingolipid-rich membrane microdomains, critically involved in the regulation of membrane receptor signaling complexes through the clustering and concentration of signaling molecules. Here, we now provide evidence that Fas ligand is constitutively localized in lipid rafts of FasL transfectants and primary T cells. Importantly, disruption of lipid rafts strongly reduces the apoptosis-inducing activity of Fas ligand. Localization to lipid rafts appears to be predominantly mediated by the characteristic cytoplasmic proline-rich domain of Fas ligand because mutations of this domain result in reduced recruitment to lipid rafts and attenuated Fas ligand killing activity. We conclude that Fas ligand clustering in lipid rafts represents an important control mechanism in the regulation of T cell-mediated cytotoxicity.
Resumo:
Intramyocellular lipids (IMCL) and muscle glycogen provide local energy during exercise (EX). The objective of this study was to clarify the role of high versus low IMCL levels at equal initial muscle glycogen on fuel selection during EX. After 3 h of depleting exercise, 11 endurance-trained males consumed in a crossover design a high-carbohydrate (7 g kg(-1) day(-1)) low-fat (0.5 g kg(-1) day(-1)) diet (HC) for 2.5 days or the same diet with 3 g kg(-1) day(-1) more fat provided during the last 1.5 days of diet (four meals; HCF). Respiratory exchange, thigh muscle substrate breakdown by magnetic resonance spectroscopy, and plasma FFA oxidation ([1-(13)C]palmitate) were measured during EX (3 h, 50% W (max)). Pre-EX IMCL concentrations were 55% higher after HCF. IMCL utilization during EX in HCF was threefold greater compared with HC (P < 0.001) and was correlated with aerobic power and highly correlated (P < 0.001) with initial content. Glycogen values and decrements during EX were similar. Whole-body fat oxidation (Fat(ox)) was similar overall and plasma FFA oxidation smaller (P < 0.05) during the first EX hour after HCF. Myocellular fuels contributed 8% more to whole-body energy demands after HCF (P < 0.05) due to IMCL breakdown (27% Fat(ox)). After EX, when both IMCL and glycogen concentrations were again similar across trials, a simulated 20-km time-trial showed no difference in performance between diets. In conclusion, IMCL concentrations can be increased during a glycogen loading diet by consuming additional fat for the last 1.5 days. During subsequent exercise, IMCL decrease in proportion to their initial content, partly in exchange for peripheral fatty acids.
Resumo:
In view of the growing health problem associated with obesity, clarification of the regulation of energy homeostasis is important. Peripheral signals, such as ghrelin and leptin, have been shown to influence energy homeostasis. Nutrients and physical exercise, in turn, influence hormone levels. Data on the hormonal response to physical exercise (standardized negative energy balance) after high-fat (HF) or low-fat (LF) diet with identical carbohydrate intake are currently not available. The aim of the study was to investigate whether a short-term dietary intervention with HF and LF affects ghrelin and leptin levels and their modulators, GH, insulin and cortisol, before and during aerobic exercise. Eleven healthy, endurance-trained male athletes (W(max) 365 +/- 29 W) were investigated twice in a randomized crossover design following two types of diet: 1. LF - 0.5 g fat/kg body weight (BW) per day for 2.5 days; 2. HF - 0.5 g fat/kg BW per day for 1 day followed by 3.5 g fat/kg BW per day for 1.5 days. After a standardized carbohydrate snack in the morning, metabolites and hormones (GH, ghrelin, leptin, insulin and cortisol) were measured before and at regular intervals throughout a 3-h aerobic exercise test on a cycloergometer at 50% of W(max). Diet did not significantly affect GH and cortisol concentrations during exercise but resulted in a significant increase in ghrelin and decrease in leptin concentrations after LF compared with HF diet (area under the curve (AUC) ghrelin LF vs HF: P < 0.03; AUC leptin LF vs HF: P < 0.02, Wilcoxon rank test). These data suggest that acute negative energy balance induced by exercise elicits a hormonal response with opposite changes of ghrelin and leptin. In addition, the hormonal response is modulated by the preceding intake of fat.
Resumo:
1H-MR spectroscopy (MRS) of intramyocellular lipids (IMCL) became particularly important when it was recognized that IMCL levels are related to insulin sensitivity. While this relation is rather complex and depends on the training status of the subjects, various other influences such as exercise and diet also influence IMCL concentrations. This may open insight into many metabolic interactions; however, it also requires careful planning of studies in order to control all these confounding influences. This review summarizes various historical, methodological, and practical aspects of 1H-MR spectroscopy (MRS) of muscular lipids. That includes a differentiation of bulk magnetic susceptibility effects and residual dipolar coupling that can both be observed in MRS of skeletal muscle, yet affecting different metabolites in a specific way. Fitting of the intra- (IMCL) and extramyocellular (EMCL) signals with complex line shapes and the transformation into absolute concentrations is discussed. Since the determination of IMCL in muscle groups with oblique fiber orientation or in obese subjects is still difficult, potential improvement with high-resolution spectroscopic imaging or at higher field strength is considered. Fat selective imaging is presented as a possible alternative to MRS and the potential of multinuclear MRS is discussed. 1H-MRS of muscle lipids allows non-invasive and repeated studies of muscle metabolism that lead to highly relevant findings in clinics and patho-physiology.
Resumo:
BACKGROUND: Mycograb (NeuTec Pharma) is a human recombinant monoclonal antibody against heat shock protein 90 that, in laboratory studies, was revealed to have synergy with amphotericin B against a broad spectrum of Candida species. METHODS: A double-blind, randomized study was conducted to determine whether lipid-associated amphotericin B plus Mycograb was superior to amphotericin B plus placebo in patients with culture-confirmed invasive candidiasis. Patients received a lipid-associated formulation of amphotericin B plus a 5-day course of Mycograb or placebo, having been stratified on the basis of Candida species (Candida albicans vs. non-albicans species of Candida). Inclusion criteria included clinical evidence of active infection at trial entry plus growth of Candida species on culture of a specimen from a clinically significant site within 3 days after initiation of study treatment. The primary efficacy variable was overall response to treatment (clinical and mycological resolution) by day 10. RESULTS: Of the 139 patients enrolled from Europe and the United States, 117 were included in the modified intention-to-treat population. A complete overall response by day 10 was obtained for 29 (48%) of 61 patients in the amphotericin B group, compared with 47 (84%) of 56 patients in the Mycograb combination therapy group (odds ratio [OR], 5.8; 95% confidence interval [CI], 2.41-13.79; P<.001). The following efficacy criteria were also met: clinical response (52% vs. 86%; OR, 5.4; 95% CI, 2.21-13.39; P<.001), mycological response (54% vs. 89%; OR, 7.1; 95% CI, 2.64-18.94; P<.001), Candida-attributable mortality (18% vs. 4%; OR, 0.2; 95% CI, 0.04-0.80; P = .025), and rate of culture-confirmed clearance of the infection (hazard ratio, 2.3; 95% CI, 1.4-3.8; P = .001). Mycograb was well tolerated. CONCLUSIONS: Mycograb plus lipid-associated amphotericin B produced significant clinical and culture-confirmed improvement in outcome for patients with invasive candidiasis.
Resumo:
Adverse effects of cDNA and oligonucleotide delivery methods have not yet been systematically analyzed. We introduce a protocol to monitor toxic effects of two non-viral lipid-based gene delivery protocols using CNS primary tissue. Cell membrane damage was monitored by quantifying cellular uptake of propidium iodide and release of cytosolic lactate dehydrogenase to the culture medium. Using a liposomal transfection reagent, cell membrane damage was already seen 24 hr after transfection. Nestin-positive target cells, which were used as morphological correlate, were severely diminished in some areas of the cultures after liposomal transfection. In contrast, the non-liposomal transfection reagent revealed no signs of toxicity. This approach provides easily accessible information of transfection-associated toxicity and appears suitable for prescreening of transfection reagents.