923 resultados para Linear mixed effect models


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The counterfactual decomposition technique popularized by Blinder (1973, Journal of Human Resources, 436–455) and Oaxaca (1973, International Economic Review, 693–709) is widely used to study mean outcome differences between groups. For example, the technique is often used to analyze wage gaps by sex or race. This article summarizes the technique and addresses several complications, such as the identification of effects of categorical predictors in the detailed decomposition or the estimation of standard errors. A new command called oaxaca is introduced, and examples illustrating its usage are given.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND Estimating the prevalence of comorbidities and their associated costs in patients with diabetes is fundamental to optimizing health care management. This study assesses the prevalence and health care costs of comorbid conditions among patients with diabetes compared with patients without diabetes. Distinguishing potentially diabetes- and nondiabetes-related comorbidities in patients with diabetes, we also determined the most frequent chronic conditions and estimated their effect on costs across different health care settings in Switzerland. METHODS Using health care claims data from 2011, we calculated the prevalence and average health care costs of comorbidities among patients with and without diabetes in inpatient and outpatient settings. Patients with diabetes and comorbid conditions were identified using pharmacy-based cost groups. Generalized linear models with negative binomial distribution were used to analyze the effect of comorbidities on health care costs. RESULTS A total of 932,612 persons, including 50,751 patients with diabetes, were enrolled. The most frequent potentially diabetes- and nondiabetes-related comorbidities in patients older than 64 years were cardiovascular diseases (91%), rheumatologic conditions (55%), and hyperlipidemia (53%). The mean total health care costs for diabetes patients varied substantially by comorbidity status (US$3,203-$14,223). Patients with diabetes and more than two comorbidities incurred US$10,584 higher total costs than patients without comorbidity. Costs were significantly higher in patients with diabetes and comorbid cardiovascular disease (US$4,788), hyperlipidemia (US$2,163), hyperacidity disorders (US$8,753), and pain (US$8,324) compared with in those without the given disease. CONCLUSION Comorbidities in patients with diabetes are highly prevalent and have substantial consequences for medical expenditures. Interestingly, hyperacidity disorders and pain were the most costly conditions. Our findings highlight the importance of developing strategies that meet the needs of patients with diabetes and comorbidities. Integrated diabetes care such as used in the Chronic Care Model may represent a useful strategy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Efforts are ongoing to decrease the noise of the GRACE gravity field models and hence to arrive closer to the GRACE baseline. The most significant error sources belong the untreated errors in the observation data and the imperfections in the background models. The recent study (Bandikova&Flury,2014) revealed that the current release of the star camera attitude data (SCA1B RL02) contain noise systematically higher than expected by about a factor 3-4. This is due to an incorrect implementation of the algorithms for quaternion combination in the JPL processing routines. Generating improved SCA data requires that valid data from both star camera heads are available which is not always the case because the Sun and Moon at times blind one camera. In the gravity field modeling, the attitude data are needed for the KBR antenna offset correction and to orient the non-gravitational linear accelerations sensed by the accelerometer. Hence any improvement in the SCA data is expected to be reflected in the gravity field models. In order to quantify the effect on the gravity field, we processed one month of observation data using two different approaches: the celestial mechanics approach (AIUB) and the variational equations approach (ITSG). We show that the noise in the KBR observations and the linear accelerations has effectively decreased. However, the effect on the gravity field on a global scale is hardly evident. We conclude that, at the current level of accuracy, the errors seen in the temporal gravity fields are dominated by errors coming from sources other than the attitude data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND Potentially avoidable risk factors continue to cause unnecessary disability and premature death in older people. Health risk assessment (HRA), a method successfully used in working-age populations, is a promising method for cost-effective health promotion and preventive care in older individuals, but the long-term effects of this approach are unknown. The objective of this study was to evaluate the effects of an innovative approach to HRA and counselling in older individuals for health behaviours, preventive care, and long-term survival. METHODS AND FINDINGS This study was a pragmatic, single-centre randomised controlled clinical trial in community-dwelling individuals aged 65 y or older registered with one of 19 primary care physician (PCP) practices in a mixed rural and urban area in Switzerland. From November 2000 to January 2002, 874 participants were randomly allocated to the intervention and 1,410 to usual care. The intervention consisted of HRA based on self-administered questionnaires and individualised computer-generated feedback reports, combined with nurse and PCP counselling over a 2-y period. Primary outcomes were health behaviours and preventive care use at 2 y and all-cause mortality at 8 y. At baseline, participants in the intervention group had a mean ± standard deviation of 6.9 ± 3.7 risk factors (including unfavourable health behaviours, health and functional impairments, and social risk factors) and 4.3 ± 1.8 deficits in recommended preventive care. At 2 y, favourable health behaviours and use of preventive care were more frequent in the intervention than in the control group (based on z-statistics from generalised estimating equation models). For example, 70% compared to 62% were physically active (odds ratio 1.43, 95% CI 1.16-1.77, p = 0.001), and 66% compared to 59% had influenza vaccinations in the past year (odds ratio 1.35, 95% CI 1.09-1.66, p = 0.005). At 8 y, based on an intention-to-treat analysis, the estimated proportion alive was 77.9% in the intervention and 72.8% in the control group, for an absolute mortality difference of 4.9% (95% CI 1.3%-8.5%, p = 0.009; based on z-test for risk difference). The hazard ratio of death comparing intervention with control was 0.79 (95% CI 0.66-0.94, p = 0.009; based on Wald test from Cox regression model), and the number needed to receive the intervention to prevent one death was 21 (95% CI 12-79). The main limitations of the study include the single-site study design, the use of a brief self-administered questionnaire for 2-y outcome data collection, the unavailability of other long-term outcome data (e.g., functional status, nursing home admissions), and the availability of long-term follow-up data on mortality for analysis only in 2014. CONCLUSIONS This is the first trial to our knowledge demonstrating that a collaborative care model of HRA in community-dwelling older people not only results in better health behaviours and increased use of recommended preventive care interventions, but also improves survival. The intervention tested in our study may serve as a model of how to implement a relatively low-cost but effective programme of disease prevention and health promotion in older individuals. TRIAL REGISTRATION International Standard Randomized Controlled Trial Number: ISRCTN 28458424.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Index tracking has become one of the most common strategies in asset management. The index-tracking problem consists of constructing a portfolio that replicates the future performance of an index by including only a subset of the index constituents in the portfolio. Finding the most representative subset is challenging when the number of stocks in the index is large. We introduce a new three-stage approach that at first identifies promising subsets by employing data-mining techniques, then determines the stock weights in the subsets using mixed-binary linear programming, and finally evaluates the subsets based on cross validation. The best subset is returned as the tracking portfolio. Our approach outperforms state-of-the-art methods in terms of out-of-sample performance and running times.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Monoclonal antibodies (mAbs) inhibiting cytokines have recently emerged as new drug modalities for the treatment of chronic inflammatory diseases. Interleukin-17 (IL-17) is a T-cell-derived central mediator of autoimmunity. Immunization with Qβ-IL-17, a virus-like particle based vaccine, has been shown to produce autoantibodies in mice and was effective in ameliorating disease symptoms in animal models of autoimmunity. To characterize autoantibodies induced by vaccination at the molecular level, we generated mouse mAbs specific for IL-17 and compared them to germline Ig sequences. The variable regions of a selected hypermutated high-affinity anti-IL-17 antibody differed in only three amino acid residues compared to the likely germline progenitor. An antibody, which was backmutated to germline, maintained a surprisingly high affinity (0.5 nM). The ability of the parental hypermutated antibody and the derived germline antibody to block inflammation was subsequently tested in murine models of multiple sclerosis (experimental autoimmune encephalomyelitis), arthritis (collagen-induced arthritis), and psoriasis (imiquimod-induced skin inflammation). Both antibodies were able to delay disease onset and significantly reduced disease severity. Thus, the mouse genome unexpectedly encodes for antibodies with the ability to functionally neutralize IL-17 in vivo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In applied work economists often seek to relate a given response variable y to some causal parameter mu* associated with it. This parameter usually represents a summarization based on some explanatory variables of the distribution of y, such as a regression function, and treating it as a conditional expectation is central to its identification and estimation. However, the interpretation of mu* as a conditional expectation breaks down if some or all of the explanatory variables are endogenous. This is not a problem when mu* is modelled as a parametric function of explanatory variables because it is well known how instrumental variables techniques can be used to identify and estimate mu*. In contrast, handling endogenous regressors in nonparametric models, where mu* is regarded as fully unknown, presents di±cult theoretical and practical challenges. In this paper we consider an endogenous nonparametric model based on a conditional moment restriction. We investigate identification related properties of this model when the unknown function mu* belongs to a linear space. We also investigate underidentification of mu* along with the identification of its linear functionals. Several examples are provided in order to develop intuition about identification and estimation for endogenous nonparametric regression and related models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we extend the debate concerning Credit Default Swap valuation to include time varying correlation and co-variances. Traditional multi-variate techniques treat the correlations between covariates as constant over time; however, this view is not supported by the data. Secondly, since financial data does not follow a normal distribution because of its heavy tails, modeling the data using a Generalized Linear model (GLM) incorporating copulas emerge as a more robust technique over traditional approaches. This paper also includes an empirical analysis of the regime switching dynamics of credit risk in the presence of liquidity by following the general practice of assuming that credit and market risk follow a Markov process. The study was based on Credit Default Swap data obtained from Bloomberg that spanned the period January 1st 2004 to August 08th 2006. The empirical examination of the regime switching tendencies provided quantitative support to the anecdotal view that liquidity decreases as credit quality deteriorates. The analysis also examined the joint probability distribution of the credit risk determinants across credit quality through the use of a copula function which disaggregates the behavior embedded in the marginal gamma distributions, so as to isolate the level of dependence which is captured in the copula function. The results suggest that the time varying joint correlation matrix performed far superior as compared to the constant correlation matrix; the centerpiece of linear regression models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Consider a nonparametric regression model Y=mu*(X) + e, where the explanatory variables X are endogenous and e satisfies the conditional moment restriction E[e|W]=0 w.p.1 for instrumental variables W. It is well known that in these models the structural parameter mu* is 'ill-posed' in the sense that the function mapping the data to mu* is not continuous. In this paper, we derive the efficiency bounds for estimating linear functionals E[p(X)mu*(X)] and int_{supp(X)}p(x)mu*(x)dx, where p is a known weight function and supp(X) the support of X, without assuming mu* to be well-posed or even identified.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the recognition of the importance of evidence-based medicine, there is an emerging need for methods to systematically synthesize available data. Specifically, methods to provide accurate estimates of test characteristics for diagnostic tests are needed to help physicians make better clinical decisions. To provide more flexible approaches for meta-analysis of diagnostic tests, we developed three Bayesian generalized linear models. Two of these models, a bivariate normal and a binomial model, analyzed pairs of sensitivity and specificity values while incorporating the correlation between these two outcome variables. Noninformative independent uniform priors were used for the variance of sensitivity, specificity and correlation. We also applied an inverse Wishart prior to check the sensitivity of the results. The third model was a multinomial model where the test results were modeled as multinomial random variables. All three models can include specific imaging techniques as covariates in order to compare performance. Vague normal priors were assigned to the coefficients of the covariates. The computations were carried out using the 'Bayesian inference using Gibbs sampling' implementation of Markov chain Monte Carlo techniques. We investigated the properties of the three proposed models through extensive simulation studies. We also applied these models to a previously published meta-analysis dataset on cervical cancer as well as to an unpublished melanoma dataset. In general, our findings show that the point estimates of sensitivity and specificity were consistent among Bayesian and frequentist bivariate normal and binomial models. However, in the simulation studies, the estimates of the correlation coefficient from Bayesian bivariate models are not as good as those obtained from frequentist estimation regardless of which prior distribution was used for the covariance matrix. The Bayesian multinomial model consistently underestimated the sensitivity and specificity regardless of the sample size and correlation coefficient. In conclusion, the Bayesian bivariate binomial model provides the most flexible framework for future applications because of its following strengths: (1) it facilitates direct comparison between different tests; (2) it captures the variability in both sensitivity and specificity simultaneously as well as the intercorrelation between the two; and (3) it can be directly applied to sparse data without ad hoc correction. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent years, disaster preparedness through assessment of medical and special needs persons (MSNP) has taken a center place in public eye in effect of frequent natural disasters such as hurricanes, storm surge or tsunami due to climate change and increased human activity on our planet. Statistical methods complex survey design and analysis have equally gained significance as a consequence. However, there exist many challenges still, to infer such assessments over the target population for policy level advocacy and implementation. ^ Objective. This study discusses the use of some of the statistical methods for disaster preparedness and medical needs assessment to facilitate local and state governments for its policy level decision making and logistic support to avoid any loss of life and property in future calamities. ^ Methods. In order to obtain precise and unbiased estimates for Medical Special Needs Persons (MSNP) and disaster preparedness for evacuation in Rio Grande Valley (RGV) of Texas, a stratified and cluster-randomized multi-stage sampling design was implemented. US School of Public Health, Brownsville surveyed 3088 households in three counties namely Cameron, Hidalgo, and Willacy. Multiple statistical methods were implemented and estimates were obtained taking into count probability of selection and clustering effects. Statistical methods for data analysis discussed were Multivariate Linear Regression (MLR), Survey Linear Regression (Svy-Reg), Generalized Estimation Equation (GEE) and Multilevel Mixed Models (MLM) all with and without sampling weights. ^ Results. Estimated population for RGV was 1,146,796. There were 51.5% female, 90% Hispanic, 73% married, 56% unemployed and 37% with their personal transport. 40% people attained education up to elementary school, another 42% reaching high school and only 18% went to college. Median household income is less than $15,000/year. MSNP estimated to be 44,196 (3.98%) [95% CI: 39,029; 51,123]. All statistical models are in concordance with MSNP estimates ranging from 44,000 to 48,000. MSNP estimates for statistical methods are: MLR (47,707; 95% CI: 42,462; 52,999), MLR with weights (45,882; 95% CI: 39,792; 51,972), Bootstrap Regression (47,730; 95% CI: 41,629; 53,785), GEE (47,649; 95% CI: 41,629; 53,670), GEE with weights (45,076; 95% CI: 39,029; 51,123), Svy-Reg (44,196; 95% CI: 40,004; 48,390) and MLM (46,513; 95% CI: 39,869; 53,157). ^ Conclusion. RGV is a flood zone, most susceptible to hurricanes and other natural disasters. People in the region are mostly Hispanic, under-educated with least income levels in the U.S. In case of any disaster people in large are incapacitated with only 37% have their personal transport to take care of MSNP. Local and state government’s intervention in terms of planning, preparation and support for evacuation is necessary in any such disaster to avoid loss of precious human life. ^ Key words: Complex Surveys, statistical methods, multilevel models, cluster randomized, sampling weights, raking, survey regression, generalized estimation equations (GEE), random effects, Intracluster correlation coefficient (ICC).^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Interaction effect is an important scientific interest for many areas of research. Common approach for investigating the interaction effect of two continuous covariates on a response variable is through a cross-product term in multiple linear regression. In epidemiological studies, the two-way analysis of variance (ANOVA) type of method has also been utilized to examine the interaction effect by replacing the continuous covariates with their discretized levels. However, the implications of model assumptions of either approach have not been examined and the statistical validation has only focused on the general method, not specifically for the interaction effect.^ In this dissertation, we investigated the validity of both approaches based on the mathematical assumptions for non-skewed data. We showed that linear regression may not be an appropriate model when the interaction effect exists because it implies a highly skewed distribution for the response variable. We also showed that the normality and constant variance assumptions required by ANOVA are not satisfied in the model where the continuous covariates are replaced with their discretized levels. Therefore, naïve application of ANOVA method may lead to an incorrect conclusion. ^ Given the problems identified above, we proposed a novel method modifying from the traditional ANOVA approach to rigorously evaluate the interaction effect. The analytical expression of the interaction effect was derived based on the conditional distribution of the response variable given the discretized continuous covariates. A testing procedure that combines the p-values from each level of the discretized covariates was developed to test the overall significance of the interaction effect. According to the simulation study, the proposed method is more powerful then the least squares regression and the ANOVA method in detecting the interaction effect when data comes from a trivariate normal distribution. The proposed method was applied to a dataset from the National Institute of Neurological Disorders and Stroke (NINDS) tissue plasminogen activator (t-PA) stroke trial, and baseline age-by-weight interaction effect was found significant in predicting the change from baseline in NIHSS at Month-3 among patients received t-PA therapy.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Complex diseases, such as cancer, are caused by various genetic and environmental factors, and their interactions. Joint analysis of these factors and their interactions would increase the power to detect risk factors but is statistically. Bayesian generalized linear models using student-t prior distributions on coefficients, is a novel method to simultaneously analyze genetic factors, environmental factors, and interactions. I performed simulation studies using three different disease models and demonstrated that the variable selection performance of Bayesian generalized linear models is comparable to that of Bayesian stochastic search variable selection, an improved method for variable selection when compared to standard methods. I further evaluated the variable selection performance of Bayesian generalized linear models using different numbers of candidate covariates and different sample sizes, and provided a guideline for required sample size to achieve a high power of variable selection using Bayesian generalize linear models, considering different scales of number of candidate covariates. ^ Polymorphisms in folate metabolism genes and nutritional factors have been previously associated with lung cancer risk. In this study, I simultaneously analyzed 115 tag SNPs in folate metabolism genes, 14 nutritional factors, and all possible genetic-nutritional interactions from 1239 lung cancer cases and 1692 controls using Bayesian generalized linear models stratified by never, former, and current smoking status. SNPs in MTRR were significantly associated with lung cancer risk across never, former, and current smokers. In never smokers, three SNPs in TYMS and three gene-nutrient interactions, including an interaction between SHMT1 and vitamin B12, an interaction between MTRR and total fat intake, and an interaction between MTR and alcohol use, were also identified as associated with lung cancer risk. These lung cancer risk factors are worthy of further investigation.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Scholars have found that socioeconomic status was one of the key factors that influenced early-stage lung cancer incidence rates in a variety of regions. This thesis examined the association between median household income and lung cancer incidence rates in Texas counties. A total of 254 individual counties in Texas with corresponding lung cancer incidence rates from 2004 to 2008 and median household incomes in 2006 were collected from the National Cancer Institute Surveillance System. A simple linear model and spatial linear models with two structures, Simultaneous Autoregressive Structure (SAR) and Conditional Autoregressive Structure (CAR), were used to link median household income and lung cancer incidence rates in Texas. The residuals of the spatial linear models were analyzed with Moran's I and Geary's C statistics, and the statistical results were used to detect similar lung cancer incidence rate clusters and disease patterns in Texas.^