929 resultados para Liming of soils.


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Problems in India regarding the management of various coastal saline soil and waterlogged environments are discussed in detail, considering in particular the potential application of mixed fish farming systems. Various operational and cost requirements of such systems are examined.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the stimulus of the very high international market value of penaeid shrimp, new pond areas for shrimp farming are rapidly being added in Bangladesh. Unfortunately, this expansion is occurring with the loss of some natural mangrove forests and with soils and sediments that are far from ideal for aquaculture. In this study, two representative shrimp farming areas were surveyed and pH, in profile depth, was recorded. It was found that the shrimp farming areas of the Chakaria Sundarban are more acidic than those of the Khulna-Satkhira region due to the acid sulfate soils.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of initial soil fabric on behaviors of granular soils are investigated by using Distinct Element Method (DEM) numerical simulation. Soil specimens are represented by an assembly of non-uniform sized spheres with different initial contact normal distributions. Isotropically consolidated triaxial compression loading and extension unloading in both undrained and drained conditions are simulated for vertically- and horizontally-sheared specimens. The numerical simulation results are compared qualitatively with the published experimental data and the effects of initial soil fabric on resulting soil behaviors are discussed, including the effects of specimen reconstitution methods, effects of large preshearing, and anisotropic characteristics in undrained and drained conditions. The effects of initial soil fabric and mode of shearing on the quasi-steady state line are also investigated. The numerical simulation results can systematically explain that the observed experimental behaviors of granular soils are due principally to their conditions of the initial soil fabric. This outcome provides insights into the observed phenomena in microscopic view. © 2011 Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper examines the settlement of instrumented 2 × 2 model pile groups in liquefiable soil based on the results of dynamic centrifuge tests. The piles are end-bearing in dense sand, and are instrumented such that base, shaft and total pile load components can be measured. The data suggest that the overall co-seismic group settlement is accrued from incremental settlements of the individual piles as the group rocks under the action of the kinematic and inertial lateral loads. A Newmarkian framework for describing this behaviour is presented in which permanent settlement is incremented whenever the load in any of the piles exceeds the capacity of the soil to support the pile. This bearing capacity of the piles in liquefied soil is estimated based on measured dynamic soil properties during shaking and observations of the changes in load carried by the piles. The contribution of the pile cap in reducing settlement is also discussed. © 2008 ASCE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In an earthquake, underground structures located in liquefiable soil deposits are susceptible to floatation following an earthquake event due to their lower unit weight relative to the surrounding saturated soil. The uplift displacement of an underground structure in liquefiable soil deposit can be affected by the buried depth and size of the structure. Dynamic centrifuge tests have been carried out to investigate the influence of these factors by measuring the uplift displacement of shallow model circular structures. Ratios for the buried depth and diameter effects of the structure are introduced to compare the uplift displacement in different soil and earthquake conditions. With the depth effect and diameter effect ratios, the uplift displacement of a buoyant structure in liquefiable soil can also be estimated based on performance of similar structures in comparable soil condition and subjected to a similar earthquake event. © 2012 Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Compensation grouting is increasingly employed as a mitigation technique of settlements induced by tunnelling and its effectiveness both in clayey and sandy soils is reported in a wide number of case histories. However, the results are highly dependent on grout properties, injection characteristics and soil properties. An experimental study was conducted to investigate the parameters that control grout injections in silty soils. The results from one injection test in a large sample of silty soil show that the compensation efficiency, defined as the ratio of the volume of heave obtained at ground surface and the injected grout volume, is much lower than one and tends to decrease with time, while the initial volume of grout lost due to pressure filtration is small. Finally, results from finite elements back analyses of the laboratory test show that a good agreement with the experimental data can be obtained if the development of large strains is taken into account. © 2012 Taylor & Francis Group.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents ongoing work on data collection and collation from a large number of laboratory cement-stabilization projects worldwide. The aim is to employ Artificial Neural Networks (ANN) to establish relationships between variables, which define the properties of cement-stabilized soils, and the two parameters determined by the Unconfined Compression Test, the Unconfined Compressive Strength (UCS), and stiffness, using E50 calculated from UCS results. Bayesian predictive neural network models are developed to predict the UCS values of cement-stabilized inorganic clays/silts, as well as sands as a function of selected soil mix variables, such as grain size distribution, water content, cement content and curing time. A model which can predict the stiffness values of cement-stabilized clays/silts is also developed and compared to the UCS model. The UCS model results emulate known trends better and provide more accurate estimates than the results from the E50 stiffness model. © 2013 American Society of Civil Engineers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Factors that affect the engineering properties of cement stabilized soils such as strength are discussed in this paper using data on these factors. The selected factors studied in this paper are initial soil water content, grain size distribution, organic matter content, binder dosage, age and curing temperature, which has been collated from a number of international deep mixing projects. Some resulting correlations from this data are discussed and presented. The concept of Artificial Neural Networks and its applicability in developing predictive models for deep mixed soils is presented and discussed using a subset of the collated data. The results from the neural network model were found to emulate the known trends and reasonable estimates of strength as a function of the selected variables were obtained. © 2012 American Society of Civil Engineers.