996 resultados para Lenguajes
Resumo:
This paper outlines the approach adopted by the PLSI research group at University of Alicante in the PASCAL-2006 second Recognising Textual Entailment challenge. Our system is composed of several components. On the one hand, the first component performs the derivation of the logic forms of the text/hypothesis pairs and, on the other hand, the second component provides us with a similarity score given by the semantic relations between the derived logic forms. In order to obtain this score we apply several measures of similitude and relatedness based on the structure and content of WordNet.
Resumo:
The present is marked by the availability of large volumes of heterogeneous data, whose management is extremely complex. While the treatment of factual data has been widely studied, the processing of subjective information still poses important challenges. This is especially true in tasks that combine Opinion Analysis with other challenges, such as the ones related to Question Answering. In this paper, we describe the different approaches we employed in the NTCIR 8 MOAT monolingual English (opinionatedness, relevance, answerness and polarity) and cross-lingual English-Chinese tasks, implemented in our OpAL system. The results obtained when using different settings of the system, as well as the error analysis performed after the competition, offered us some clear insights on the best combination of techniques, that balance between precision and recall. Contrary to our initial intuitions, we have also seen that the inclusion of specialized Natural Language Processing tools dealing with Temporality or Anaphora Resolution lowers the system performance, while the use of topic detection techniques using faceted search with Wikipedia and Latent Semantic Analysis leads to satisfactory system performance, both for the monolingual setting, as well as in a multilingual one.
Resumo:
The importance of the new textual genres such as blogs or forum entries is growing in parallel with the evolution of the Social Web. This paper presents two corpora of blog posts in English and in Spanish, annotated according to the EmotiBlog annotation scheme. Furthermore, we created 20 factual and opinionated questions for each language and also the Gold Standard for their answers in the corpus. The purpose of our work is to study the challenges involved in a mixed fact and opinion question answering setting by comparing the performance of two Question Answering (QA) systems as far as mixed opinion and factual setting is concerned. The first one is open domain, while the second one is opinion-oriented. We evaluate separately the two systems in both languages and propose possible solutions to improve QA systems that have to process mixed questions.
Resumo:
This paper shows a system about the recognition of temporal expressions in Spanish and the resolution of their temporal reference. For the identification and recognition of temporal expressions we have based on a temporal expression grammar and for the resolution on an inference engine, where we have the information necessary to do the date operation based on the recognized expressions. For further information treatment, the output is proposed by means of XML tags in order to add standard information of the resolution obtained. Different kinds of annotation of temporal expressions are explained in another articles [WILSON2001][KATZ2001]. In the evaluation of our proposal we have obtained successful results.
Resumo:
This paper shows an empirical study about the anaphoric accessibility space in Spanish dialogues. According to this study, antecedents of pronominal and adjectival anaphors can almost always (95.9%) be found in the noun phrases set taken from spaces defined using a structure based on adjacency pairs. Furthermore, a proposal of a reliable annotation scheme for Spanish dialogues is presented in order to define this anaphoric accessibility space. Using this annotation scheme, anaphora resolution algorithms can locate the adequate set of anaphor antecedent candidates.
Resumo:
This paper presents an algorithm for identifying noun-phrase antecedents of pronouns and adjectival anaphors in Spanish dialogues. We believe that anaphora resolution requires numerous sources of information in order to find the correct antecedent of the anaphor. These sources can be of different kinds, e.g., linguistic information, discourse/dialogue structure information, or topic information. For this reason, our algorithm uses various different kinds of information (hybrid information). The algorithm is based on linguistic constraints and preferences and uses an anaphoric accessibility space within which the algorithm finds the noun phrase. We present some experiments related to this algorithm and this space using a corpus of 204 dialogues. The algorithm is implemented in Prolog. According to this study, 95.9% of antecedents were located in the proposed space, a precision of 81.3% was obtained for pronominal anaphora resolution, and 81.5% for adjectival anaphora.
Resumo:
This paper presents a multilayered architecture that enhances the capabilities of current QA systems and allows different types of complex questions or queries to be processed. The answers to these questions need to be gathered from factual information scattered throughout different documents. Specifically, we designed a specialized layer to process the different types of temporal questions. Complex temporal questions are first decomposed into simple questions, according to the temporal relations expressed in the original question. In the same way, the answers to the resulting simple questions are recomposed, fulfilling the temporal restrictions of the original complex question. A novel aspect of this approach resides in the decomposition which uses a minimal quantity of resources, with the final aim of obtaining a portable platform that is easily extensible to other languages. In this paper we also present a methodology for evaluation of the decomposition of the questions as well as the ability of the implemented temporal layer to perform at a multilingual level. The temporal layer was first performed for English, then evaluated and compared with: a) a general purpose QA system (F-measure 65.47% for QA plus English temporal layer vs. 38.01% for the general QA system), and b) a well-known QA system. Much better results were obtained for temporal questions with the multilayered system. This system was therefore extended to Spanish and very good results were again obtained in the evaluation (F-measure 40.36% for QA plus Spanish temporal layer vs. 22.94% for the general QA system).
Resumo:
The Internet boom in recent years has increased the interest in the field of plagiarism detection. A lot of documents are published on the Net everyday and anyone can access and plagiarize them. Of course, checking all cases of plagiarism manually is an unfeasible task. Therefore, it is necessary to create new systems that are able to automatically detect cases of plagiarism produced. In this paper, we introduce a new hybrid system for plagiarism detection which combines the advantages of the two main plagiarism detection techniques. This system consists of two analysis phases: the first phase uses an intrinsic detection technique which dismisses much of the text, and the second phase employs an external detection technique to identify the plagiarized text sections. With this combination we achieve a detection system which obtains accurate results and is also faster thanks to the prefiltering of the text.
Resumo:
Preliminary research demonstrated the EmotiBlog annotated corpus relevance as a Machine Learning resource to detect subjective data. In this paper we compare EmotiBlog with the JRC Quotes corpus in order to check the robustness of its annotation. We concentrate on its coarse-grained labels and carry out a deep Machine Learning experimentation also with the inclusion of lexical resources. The results obtained show a similarity with the ones obtained with the JRC Quotes corpus demonstrating the EmotiBlog validity as a resource for the SA task.
Resumo:
The development of the Web 2.0 led to the birth of new textual genres such as blogs, reviews or forum entries. The increasing number of such texts and the highly diverse topics they discuss make blogs a rich source for analysis. This paper presents a comparative study on open domain and opinion QA systems. A collection of opinion and mixed fact-opinion questions in English is defined and two Question Answering systems are employed to retrieve the answers to these queries. The first one is generic, while the second is specific for emotions. We comparatively evaluate and analyze the systems’ results, concluding that opinion Question Answering requires the use of specific resources and methods.
Resumo:
The extension to new languages is a well known bottleneck for rule-based systems. Considerable human effort, which typically consists in re-writing from scratch huge amounts of rules, is in fact required to transfer the knowledge available to the system from one language to a new one. Provided sufficient annotated data, machine learning algorithms allow to minimize the costs of such knowledge transfer but, up to date, proved to be ineffective for some specific tasks. Among these, the recognition and normalization of temporal expressions still remains out of their reach. Focusing on this task, and still adhering to the rule-based framework, this paper presents a bunch of experiments on the automatic porting to Italian of a system originally developed for Spanish. Different automatic rule translation strategies are evaluated and discussed, providing a comprehensive overview of the challenge.
Resumo:
The huge amount of data available on the Web needs to be organized in order to be accessible to users in real time. This paper presents a method for summarizing subjective texts based on the strength of the opinion expressed in them. We used a corpus of blog posts and their corresponding comments (blog threads) in English, structured around five topics and we divided them according to their polarity and subsequently summarized. Despite the difficulties of real Web data, the results obtained are encouraging; an average of 79% of the summaries is considered to be comprehensible. Our work allows the user to obtain a summary of the most relevant opinions contained in the blog. This allows them to save time and be able to look for information easily, allowing more effective searches on the Web.
Resumo:
The exponential growth of the subjective information in the framework of the Web 2.0 has led to the need to create Natural Language Processing tools able to analyse and process such data for multiple practical applications. They require training on specifically annotated corpora, whose level of detail must be fine enough to capture the phenomena involved. This paper presents EmotiBlog – a fine-grained annotation scheme for subjectivity. We show the manner in which it is built and demonstrate the benefits it brings to the systems using it for training, through the experiments we carried out on opinion mining and emotion detection. We employ corpora of different textual genres –a set of annotated reported speech extracted from news articles, the set of news titles annotated with polarity and emotion from the SemEval 2007 (Task 14) and ISEAR, a corpus of real-life self-expressed emotion. We also show how the model built from the EmotiBlog annotations can be enhanced with external resources. The results demonstrate that EmotiBlog, through its structure and annotation paradigm, offers high quality training data for systems dealing both with opinion mining, as well as emotion detection.
Resumo:
In this paper we present a method to automatically identify linguistic contexts which contain possible causes of emotions or emotional states from Italian newspaper articles (La Repubblica Corpus). Our methodology is based on the interplay between relevant linguistic patterns and an incremental repository of common sense knowledge on emotional states and emotion eliciting situations. Our approach has been evaluated with respect to manually annotated data. The results obtained so far are satisfying and support the validity of the methodology proposed.
Resumo:
This paper presents the automatic extension to other languages of TERSEO, a knowledge-based system for the recognition and normalization of temporal expressions originally developed for Spanish. TERSEO was first extended to English through the automatic translation of the temporal expressions. Then, an improved porting process was applied to Italian, where the automatic translation of the temporal expressions from English and from Spanish was combined with the extraction of new expressions from an Italian annotated corpus. Experimental results demonstrate how, while still adhering to the rule-based paradigm, the development of automatic rule translation procedures allowed us to minimize the effort required for porting to new languages. Relying on such procedures, and without any manual effort or previous knowledge of the target language, TERSEO recognizes and normalizes temporal expressions in Italian with good results (72% precision and 83% recall for recognition).