1000 resultados para Leishmania vaccine


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of an RNA virus in a South American subgenus of the Leishmania parasite, L. (Viannia), was detected several decades ago but its role in leishmanial virulence and metastasis was only recently described. In Leishmania guyanensis, the nucleic acid of Leishmania RNA virus (LRV1) acts as a potent innate immunogen, eliciting a hyper-inflammatory immune response through toll-like receptor 3 (TLR3). The resultant inflammatory cascade has been shown to increase disease severity, parasite persistence, and perhaps even resistance to anti-leishmanial drugs. Curiously, LRVs were found mostly in clinical isolates prone to infectious metastasis in both their human source and experimental animal model, suggesting an association between the viral hyperpathogen and metastatic complications such as mucocutaneous leishmaniasis (MCL). MCL presents as chronic secondary lesions in the mucosa of the mouth and nose, debilitatingly inflamed and notoriously refractory to treatment. Immunologically, this outcome has many of the same hallmarks associated with the reaction to LRV: production of type 1 interferons, bias toward a chronic Th1 inflammatory state and an impaired ability of host cells to eliminate parasites through oxidative stress. More intriguing, is that the risk of developing MCL is found almost exclusively in infections of the L. (Viannia) subtype, further indication that leishmanial metastasis is caused, at least in part, by a parasitic component. LRV present in this subgenus may contribute to the destructive inflammation of metastatic disease either by acting in concert with other intrinsic "metastatic factors" or by independently preying on host TLR3 hypersensitivity. Because LRV amplifies parasite virulence, its presence may provide a unique target for diagnostic and clinical intervention of metastatic leishmaniasis. Taking examples from other members of the Totiviridae virus family, this paper reviews the benefits and costs of endosymbiosis, specifically for the maintenance of LRV infection in Leishmania parasites, which is often at the expense of its human host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two soluble exopeptidases were identified in promastigotes of Leishmania major, using an iodinated model tetrapeptide (LIAY) as substrate. Similar activities were also detected in L. major amastigotes and in different species of Leishmania promastigotes. A carboxy- and an aminopeptidase activity were resolved and isolated by anion exchange and gel permeation chromatographies. A single polypeptide of 62 kDa co-purified with the aminopeptidase activity. Optimum pH was neutral for the carboxypeptidase and neutral to alkaline for the aminopeptidase. Both activities were able to hydrolyse a dipeptide substrate (YL), and were inhibited by 20 microM bestatin and 200 microM 1,10-phenanthroline, but not by leupeptin, iodoacetamide and a range of other inhibitors. These results strongly suggest that both enzymes are metalloexopeptidases and thus represent a novel class of soluble peptidases in Leishmania.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Fully efficient vaccines against malaria pre-erythrocytic stage are still lacking. The objective of this dose/adjuvant-finding study was to evaluate the safety, reactogenicity and immunogenicity of a vaccine candidate based on a peptide spanning the C-terminal region of Plasmodium falciparum circumsporozoite protein (PfCS102) in malaria naive adults. METHODOLOGY AND PRINCIPAL FINDINGS: Thirty-six healthy malaria-naive adults were randomly distributed into three dose blocks (10, 30 and 100 microg) and vaccinated with PfCS102 in combination with either Montanide ISA 720 or GSK proprietary Adjuvant System AS02A at days 0, 60, and 180. Primary end-point (safety and reactogenicity) was based on the frequency of adverse events (AE) and of abnormal biological safety tests; secondary-end point (immunogenicity) on P. falciparum specific cell-mediated immunity and antibody response before and after immunization. The two adjuvant formulations were well tolerated and their safety profile was good. Most AEs were local and, when systemic, involved mainly fatigue and headache. Half the volunteers in AS02A groups experienced severe AEs (mainly erythema). After the third injection, 34 of 35 volunteers developed anti-PfCS102 and anti-sporozoite antibodies, and 28 of 35 demonstrated T-cell proliferative responses and IFN-gamma production. Five of 22 HLA-A2 and HLA-A3 volunteers displayed PfCS102 specific IFN-gamma secreting CD8(+) T cell responses. Responses were only marginally boosted after the 3(rd) vaccination and remained stable for 6 months. For both adjuvants, the dose of 10 microg was less immunogenic in comparison to 30 and 100 microg that induced similar responses. AS02A formulations with 30 microg or 100 microg PfCS102 induced about 10-folds higher antibody and IFN-gamma responses than Montanide formulations. CONCLUSIONS/SIGNIFICANCE: PfCS102 peptide was safe and highly immunogenic, allowing the design of more advanced trials to test its potential for protection. Two or three immunizations with a dose of 30 microg formulated with AS02A appeared the most appropriate choice for such studies. TRIAL REGISTRATION: Swissmedic.ch 2002 DR 1227.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

More knowledge on the reasons for refusal of the influenza vaccine in elderly patients is essential to target groups for additional information, and hence improve coverage rate. The objective of the present study was to describe precisely the true motives for refusal. All patients aged over 64 who attended the Medical Outpatient Clinic, University of Lausanne, or their private practitioner's office during the 1999 and 2000 vaccination periods were included. Each patient was informed on influenza and its complications, as well as on the need for vaccination, its efficacy and adverse events. The vaccination was then proposed. In case of refusal, the reasons were investigated with an open question. Out of 1398 patients, 148 (12%) refused the vaccination. The main reasons for refusal were the perception of being in good health (16%), of not being susceptible to influenza (15%), of not having had the influenza vaccine in the past (15%), of having had a bad experience either personally or a relative (15%), and the uselessness of the vaccine (10%). Seventeen percent gave miscellaneous reasons and 12% no reason at all for refusal. Little epidemiological knowledge and resistance to change appear to be the major obstacles for wide acceptance of the vaccine by the elderly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Immunogenicity of standard infl uenza vaccine is suboptimal in lung transplant recipients. Intradermal vaccine may elicit stronger responses due to recruitment of local dendritic cells. We compared the immunogenicity of the infl uenza vaccine administered intradermally (ID) to the standard intramuscular (IM) vaccination. Methods: In this investigator-blinded, two-center, prospective trial, lung transplant patients were randomized to receive intradermal (6ug) or intramuscular (15ug) 2008/9 trivalent inactivated infl uenza vaccine. Immunogenicity was evaluated using a standard hemagglutination inhibition assay (HIA). Response to the vaccine was defi ned as a fourfold increase of the HIA levels for any of the 3 viral strains in the vaccine. Geometric mean titers (GMT) and seroprotection rate (HIA ≥32) were also analyzed. Patients were followed during 6 months for the development of infl uenza or acute rejection. Results: We randomized 84 patients to receive the ID (n=41) vs. IM (n=43) vaccine, respectively. Baseline characteristics were similar between groups. Median time from transplantation was 3.4 yrs (ID) vs. 3.3 yrs (IM) (p=0.84). Vaccine response to at least one antigen was seen in 6/41 (14.6%) patients in the ID vs. 8/43 (18.6%) in the IM group (p=0.77). In the ID group, GMTs (95% CI) after vaccination were 15.7 (11.1-22.3) for H1N1, 84.0 (52.0-135.7) for H3N2, and 14.5 (9.6-21.8) for B strains vs. in the IM group 17.5 (11.8-25.9) for H1N1, 108.9 (77.5-153.2) for H3N2, and 20.2 (12.8-31.9) for B (p=NS, all 3 strains). Seroprotection was 39% (H1N1), 82.9% (H3N2) and 29.3% (B strain) in the ID group vs. 27.9% (H1N1), 97.7% (H3N2) and 58.1% (B strain) in the IM group. No factors associated with vaccine response were identifi ed. Mild adverse events were seen in 44% of patients (ID) vs. 34% (IM) (p=0.38). Two patients (4.8%) in the ID group developed infl uenza infection compared to none in the IM group. Two patients in each group developed biopsy-proven acute rejection during follow-up. Conclusions: Immunogenicity of the 2008/09 infl uenza vaccine was poor in lung transplant recipients. ID administration of the vaccine elicited similar immune responses to standard IM vaccination. Novel strategies of vaccination are needed to protect lung transplant recipients from infl uenza.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parasites of the Leishmania Viannia subgenus are major causative agents of mucocutaneous leishmaniasis (MCL), a disease characterised by parasite dissemination (metastasis) from the original cutaneous lesion to form debilitating secondary lesions in the nasopharyngeal mucosa. We employed a protein profiling approach to identify potential metastasis factors in laboratory clones of L. (V.) guyanensis with stable phenotypes ranging from highly metastatic (M+) through infrequently metastatic (M+/M-) to non-metastatic (M-). Comparison of the soluble proteomes of promastigotes by two-dimensional electrophoresis revealed two abundant protein spots specifically associated with M+ and M+/M- clones (Met2 and Met3) and two others exclusively expressed in M- parasites (Met1 and Met4). The association between clinical disease phenotype and differential expression of Met1-Met4 was less clear in L. Viannia strains from mucosal (M+) or cutaneous (M-) lesions of patients. Identification of Met1-Met4 by biological mass spectrometry (LC-ES-MS/MS) and bioinformatics revealed that M+ and M- clones express distinct acidic and neutral isoforms of both elongation factor-1 subunit beta (EF-1beta) and cytosolic tryparedoxin peroxidase (TXNPx). This interchange of isoforms may relate to the mechanisms by which the activities of EF-1beta and TXNPx are modulated, and/or differential post-translational modification of the gene product(s). The multiple metabolic functions of EF-1 and TXNPx support the plausibility of their participation in parasite survival and persistence and thereby, metastatic disease. Both polypeptides are active in resistance to chemical and oxidant stress, providing a basis for further elucidation of the importance of antioxidant defence in the pathogenesis underlying MCL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT : Les infections par le parasite Leishmania guyanensis se caractérisent par une dissémination depuis le site initial d'infection jusqu'aux tissus naso-pharyngés, responsable de la Leishmaniose à lésions secondaires muco-cutanées (LMC). Les lésions des patients atteints de LMC montrent une massive infiltration de cellules immunitaires, une réponse immunitaire élevée et la présence de parasites (bien qu'en très faible quantité). La LMC engendre une augmentation de l'expression de TNFa ainsi qu'un défaut dans le contrôle de la réponse immunitaire caractérisé par une absence de réponse à l'IL 10. La réponse immunitaire de l'hôte ainsi que la virulence du parasite sont deux facteurs reconnus pour le contrôle de l'infection. Le mécanisme de la pathogenèse de la LMC restent grandement incompris, surtout le mécanisme de dissémination de l'infection du site d'inoculation jusqu'aux sites secondaires d'infection (métastases) ainsi que les détails de la réponse de l'hôte contre le pathogène. Dans un modèle d'infection d' hamsters avec des parasites du Nouveau Monde, la classification des parasites Leishmania se fait en fonction de leur capacité à développer des métastases. Ce modéle d'infection a permis de caractériser différentes souches de parasites selon la classification de l'Organisation Mondiale de la Sante (OMS) tel que la souche de référence W>É-II/BR/78/M5313 qui est reconnue comme hautement métastatique alors que ces clones dérivés de M5313 montrent de grandes variations quand a leur capacité à créer des métastases. Les clones 13 et 21 sont métastatiques (M+) alors que les clones 3 et 17 sont nonmétastatiques (NI-). Les objectifs de cette thèse ont été d'étudier le rôle de la réponse immunitaire innée des macrophages après infection in vitro avec différents clones métastatiques et non-métastatiques du parasite L. guyanensis, ainsi que d'étudier la réponse immunitaire générée suite à une infection in vivo par les clones M+ et M- de L. guyanensis dans un modèle marin. L'analyse de la .réponse immunitaire des macrophages in vitro montrent qu'il y aune augmentation significative de leur statut d'activation après infection par des parasites M+ indiquée par la modulation des marqueurs d'activation de surface CD80, CD86 et CD40, ainsi que une augmentation significative de CXCL 10, CCLS, IL6 et TNFa au niveau transcription de l'ARNm et au niveau de la protéine. Cette phénomène d'activation a été observée chez les deux souches de souris C57BL/6 et BALB/c. L'utilisation d'un inhibiteur d'entrée des parasites (Cytochalsin D) ou d'un inhibiteur des fonctions endosomales (Chloroquine) diminue de manière significative la réponse des macrophages aux parasites M+. L'utilisation de macrophages déficients en TLR, MyD88, et TRIF a démontré que la réponse générée après infection par les parasites M+ était dépendante de la voie de signalisation de TRIF et TLR3. Lors d'infection in vivo par des parasites M5313, au moins 50% des souris BALB/c présentent un phénotype sensible caractérisé par des lésions non-nécrotiques qui ne guérissent pas, persistent plus de 13 semaines après infection et contiennent un nombre considérable de parasites. Ces souris développent une réponse immunitaire de type T helper 2 (Th2) avec un niveau élevé d'IL-4 et d'IL-10. Les autres souris ont un phénotype non-sensible, les souris développant peu ou pas de lésion, avec peu de parasites et une réponse immunitaire diminuée, caractérisée par un niveau faible d'IFNy, d'IL4 et d'IL10. De plus, les souris BALB/c infectées par un parasite L. guyanensis isolé à partir des lésions muco-cutanées d'un patient humain atteint de LMC ont démontrés un phénotype similaire aux souris infectées par la souche M5313 avec 50% des souris développant des lésions persistantes, alors qu'un parasite dérivé des lésions cutanées humains n'a montré qu'une faible sensibilité avec une lésion transitoire qui finit par guérir. Nous avons montré que la sensibilité de ces souris BALB/c dépend de l'IL-4 et de l'IL-10 car les souris IL-10-/sur fond génétique BALB/c ainsi que les souris BALB/c traitée avec de l'anti-IL4 étaient capables de contrôler l'infection par M5313. Les souris C57BL/6 sont résistantes à l'infection par le parasite M5313. Elles développent une lésion transitoire qui guérit 9 semaines après infection. Ces souris résistantes ont un très faible taux de parasites au site d'infection et développent une réponse immunitaire de type Thl avec un niveau élevé d'IFNr et peu d'IL4 et d'IL10. Les infections in vivo de souris déficientes en MyD88, TRIF, TLR3 ou TLR9 (sur fond génétique C57BL/6) ont indiqué que MyD88 et TLR9 étaient impliqués dans la résistance à l'infection par L. guyanensi, et que TRIF et TLR3 avaient un rôle important dans la sensibilité. Ce travail met en évidence le fait que la réponse immunitaire de l'hôte est modulée par le parasite selon leur caractérisation d'être soit M+ ou M-. Nous avons démontré également que plusieurs gènes et voies de signalisations étaient impliqués dans cette réponse favorisant le développement d'une LMC. ABSTRACT : Leishmania guyanensis parasites are able to disseminate from the initial site of cutaneous skin infection to the nasopharyngeal tissues resulting in destructive secondary lesions and the disease Mucocutaneous Leishmaniasis (MCL). The secondary lesions in patients have intense immune cell infiltration, elevated immune responses and the presence (albeit at low levels) of parasites. More specifically, MCL patients produce higher levels of TNFa and display impairment in their ability to control the immune response due to a defect in their ability to respond to IL10. Little is known about the pathogenesis of MCL, especially about the dissemination of the infection from the site of inoculation to secondary sites (metastasis) and the response of the host to the pathogen. The hamster model of L. guyanensis infection has previously characterized the WHO reference strain, L. guyanensis WHI/BR/78/M5313, as being highly metastatic. Clones of parasites derived from this reference strain show a differential ability to metastasize. This thesis studied the differential immune response generated by macrophages in vitro, or by mice in vivo, following infection with L. guyanensis parasites. A significant increase in the activation status of macrophages derived from C57BL/6 or BALB/c mice was observed after in vitro infection with L. guyanensis parasites when compared to non-metastatic parasites. This change in status was evidenced by the increased expression of surface activation markers, together with the chemokines, CXCL 10, CCLS, and cytokines, IL6 and TNFa. Furthermore, in vitro infection of macrophages isolated from mice deficient in either a specific Toll Like Receptor (TLR) or the adaptor molecules MyD88 or TRIF, indicated that the immune response generated following L. guyanensis metastatic parasite infection was reliant on the TRIF dependent TLR3 signalling pathway. In vivo footpad infection of BALB/c mice with the L. guyanensis M5313 parasites showed a reproducible susceptible phenotype, whereby at least 50% of infected mice developed non-healing, nonnecrosing lesions with high parasitemia that persisted over 13 weeks post infection. This phenotype was characterized by a Th2 type cytokine immune response with increased levels of IL4 and IL10 detected in the draining lymph nodes. IL 10 deficient mice on a BALB/c background, or BALB/c mice treated with anti-IL4 were able to control infection with L. guyanensis M5313 parasites, thereby proving that these cytokines were indeed implicated in the susceptibility to infection. Moreover, infection of BALB/c mice with patient isolated L. guyanensis parasites confirmed that MCL derived parasites were able to induce a susceptibility phenotype similar to that of L. guyanensis M5313. C57BL/6 mice, on the other hand, were highly resistant to infection with L. guyanensis M5313 parasites and produced transient footpad swelling that healed by week 9 post infection, together with low degrees of footpad parasitemia and a Thl polarized immune response. Infection of mice deficient in MyD88, TRIF, TLR3, and TLR9 (on a C57BL/6 background), indicated that MyD88 and TLR9 were involved in the resistance of these mice to infection, and that TRIF and TLR3 were involved in the susceptibility. This study has shown that the host response can be differentially modulated depending on the infecting parasite with several genes and pathways being identified that could be involved in promoting the development of MCL.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To identify malaria antigens for vaccine development, we selected alpha-helical coiled coil domains of proteins predicted to be present in the parasite erythrocytic stage. The corresponding synthetic peptides are expected to mimic structurally "native" epitopes. Indeed the 95 chemically synthesized peptides were all specifically recognized by human immune sera, though at various prevalence. Peptide specific antibodies were obtained both by affinity-purification from malaria immune sera and by immunization of mice. These antibodies did not show significant cross reactions, i.e., they were specific for the original peptide, reacted with native parasite proteins in infected erythrocytes and several were active in inhibiting in vitro parasite growth. Circular dichroism studies indicated that the selected peptides assumed partial or high alpha-helical content. Thus, we demonstrate that the bioinformatics/chemical synthesis approach described here can lead to the rapid identification of molecules which target biologically active antibodies, thus identifying suitable vaccine candidates. This strategy can be, in principle, extended to vaccine discovery in a wide range of other pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although increasing evidence suggests that CTL are important to fight the development of some cancers, the frequency of detectable tumor-specific T cells is low in cancer patients, and these cells have generally poor functional capacities, compared with virus-specific CD8(+) T cells. The generation with a vaccine of potent CTL responses against tumor Ags therefore remains a major challenge. In the present study, ex vivo analyses of Melan-A-specific CD8(+) T cells following vaccination with Melan-A peptide and CpG oligodeoxynucleotides revealed the successful induction in the circulation of effective melanoma-specific T cells, i.e., with phenotypic and functional characteristics similar to those of CTL specific for immunodominant viral Ags. Nonetheless, the eventual impact on tumor development in vaccinated melanoma donors remained limited. The comprehensive study of vaccinated patient metastasis shows that vaccine-driven tumor-infiltrating lymphocytes, although activated, still differed in functional capacities compared with blood counterparts. This coincided with a significant increase of FoxP3(+) regulatory T cell activity within the tumor. The consistent induction of effective tumor-specific CD8(+) T cells in the circulation with a vaccine represents a major achievement; however, clinical benefit may not be achieved unless the tumor environment can be altered to enable CD8(+) T cell efficacy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Tobacco dependence is the leading cause of preventable death and disabilities worldwide and nicotine is the main substance responsible for the addiction to tobacco. A vaccine against nicotine was tested in a 6-month randomized, double blind phase II smoking cessation study in 341 smokers with a subsequent 6-month follow-up period. METHODOLOGY/PRINCIPAL FINDINGS: 229 subjects were randomized to receive five intramuscular injections of the nicotine vaccine and 112 to receive placebo at monthly intervals. All subjects received individual behavioral smoking cessation counseling. The vaccine was safe, generally well tolerated and highly immunogenic, inducing a 100% antibody responder rate after the first injection. Point prevalence of abstinence at month 2 showed a statistically significant difference between subjects treated with Nicotine-Qbeta (47.2%) and placebo (35.1%) (P = 0.036), but continuous abstinence between months 2 and 6 was not significantly different. However, in subgroup analysis of the per-protocol population, the third of subjects with highest antibody levels showed higher continuous abstinence from month 2 until month 6 (56.6%) than placebo treated participants (31.3%) (OR 2.9; P = 0.004) while medium and low antibody levels did not increase abstinence rates. After 12 month, the difference in continuous abstinence rate between subjects on placebo and those with high antibody response was maintained (difference 20.2%, P = 0.012). CONCLUSIONS: Whereas Nicotine-Qbeta did not significantly increase continuous abstinence rates in the intention-to-treat population, subgroup analyses of the per-protocol population suggest that such a vaccination against nicotine can significantly increase continuous abstinence rates in smokers when sufficiently high antibody levels are achieved. Immunotherapy might open a new avenue to the treatment of nicotine addiction. TRIAL REGISTRATION: Swiss Medical Registry 2003DR2327; ClinicalTrials.gov NCT00369616.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mucocutaneous leishmaniasis is caused by infections with intracellular parasites of the Leishmania Viannia subgenus, including Leishmania guyanensis. The pathology develops after parasite dissemination to nasopharyngeal tissues, where destructive metastatic lesions form with chronic inflammation. Currently, the mechanisms involved in lesion development are poorly understood. Here we show that metastasizing parasites have a high Leishmania RNA virus-1 (LRV1) burden that is recognized by the host Toll-like receptor 3 (TLR3) to induce proinflammatory cytokines and chemokines. Paradoxically, these TLR3-mediated immune responses rendered mice more susceptible to infection, and the animals developed an increased footpad swelling and parasitemia. Thus, LRV1 in the metastasizing parasites subverted the host immune response to Leishmania and promoted parasite persistence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The levels of regulatory T cells (Treg cells), analyzed by Foxp3 mRNA expression, were determined in lesions from patients with acute cutaneous leishmaniasis (ACL) and chronic cutaneous leishmaniasis (CCL). We demonstrated that Treg cells preferentially accumulate in lesions from ACL patients during the early phase of infection (lesion duration of less than 1 month). In addition, levels of Foxp3 mRNA transcripts were significantly higher in specimens from patients with CCL than in those from patients with ACL, suggesting a critical role of intralesional Treg cells in CCL. Intralesional Treg cells from both ACL and CCL patients were shown to have suppressive functions in vitro, since they inhibited the gamma interferon (IFN-gamma) produced by CD4(+) CD25(-) T cells purified from peripheral blood mononuclear cells from the same patient in response to Leishmania guyanensis stimulation. Intralesional 2,3-indoleamine dioxygenase (IDO) mRNA expression was associated with that of Foxp3, suggesting a role for IDO in the suppressive activity of intralesional Treg cells. In addition, a role, albeit minor, of interleukin-10 (IL-10) was also demonstrated, since neutralization of IL-10 produced by intralesional T cells increased IFN-gamma production by effector cells in an in vitro suppressive assay. These results confirm the role of intralesional Treg cells in the immunopathogenesis of human Leishmania infection, particularly in CCL patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following infection with the protozoan parasite Leishmania major, C57BL/6 mice develop a small lesion that heals spontaneously. Resistance to infection is associated with the development of CD4(+) Th1 cells producing gamma interferon (IFN-gamma) and tumor necrosis factor (TNF), which synergize in activating macrophages to their microbicidal state. We show here that C57BL/6 mice lacking both TNF and Fas ligand (FasL) (gld TNF(-/-) mice) infected with L. major neither resolved their lesions nor controlled Leishmania replication despite the development of a strong Th1 response. Comparable inducible nitric oxide synthase (iNOS) activities were detected in lesions of TNF(-/-), gld TNF(-/-), and gld mice, but only gld and gld TNF(-/-) mice failed to control parasite replication. Parasite numbers were high in gld mice and even more elevated in gld TNF(-/-) mice, suggesting that, in addition to iNOS, the Fas/FasL pathway is required for successful control of parasite replication and that TNF contributes only a small part to this process. Furthermore, FasL was shown to synergize with IFN-gamma for the induction of leishmanicidal activity within macrophages infected with L. major in vitro. Interestingly, TNF(-/-) mice maintained large lesion size throughout infection, despite being able to largely control parasite numbers. Thus, IFN-gamma, FasL, and iNOS appear to be essential for the complete control of parasite replication, while the contribution of TNF is more important in controlling inflammation at the site of parasite inoculation.