975 resultados para Layer dependent order parameters
Resumo:
An attosecond pump-probe scheme that combines the use of a free-electron laser pulse with an ultrashort pulse is applied in order to explore the ultrafast excitation dynamics in Ne. We describe the multielectron dynamics using a new nonperturbative time-dependent R-matrix theory. This theory enables the interaction of ultrashort light fields with multielectron atoms and atomic ions to be determined from first principles. By probing the emission of an inner 2s electron from Ne we are also able to study the bound state population dynamics during the free-electron laser pulse.
Resumo:
increasing evidence from both clinical and experimental studies indicates that the insulin-releasing hormone, glucagon-like peptide-1 (GLP-1) may exert additional protective/reparative effects on the cardiovascular system. The aim of this study was to examine vasorelaxant effects of GLP-1(7-36)amide, three structurally-related peptides and a non-peptide GLP-1 agonist in rat aorta. Interestingly, all GLP-1 compounds, including the established GLP-1 receptor antagonist, exendin (9-39) caused concentration-dependent relaxation. Mechanistic studies employing hyperpolarising concentrations of potassium or glybenclamide revealed that these relaxant effects are mediated via specific activation of ATP-sensitive potassium channels. Further experiments using a specific membrane-permeable cyclic AMP (cAMP) antagonist, and demonstration of increased cAMP production in response to GLP-1 illustrated the critical importance of this pathway. These data significantly extend previous observations suggesting that GLP-1 may modulate vascular function, and indicate that this effect may be mediated by the GLP-1 receptor. However, further studies are required in order to establish whether GLP-1 related agents may confer additional cardiovascular benefits to diabetic patients. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Extremely regular self-organized patterns of 90o ferroelastic domains have been reported in freestanding single crystal thin films of ferroelectric BaTiO3. Lukyanchuk et al. [Phys Rev B 79, 144111 (2009)] have recently shown that the domain size as a function of thickness for such free standing films can be well described assuming that the domains are due to stress caused by a surface tension layer that does not undergo the paraelectric–ferroelectric transition. From the starting point of Lukyanchuk’s model, it is shown here that the ‘‘universal’’relationship between domain size and domain wall thickness previously observed in ferroelectrics, ferromagnets and multiferroics is also valid for ferroelastic domains.Further analysis of experimental data also shows that the domain wall thickness can vary considerably (an order of magnitude) from sample to sample even for the same material (BaTiO3), in spite of which the domain size scaling model is still valid, provided that the correct,sample dependent, domain wall thickness is used.
Resumo:
Fundus autofluorescence (AF) imaging by confocal scanning laser ophthalmoscopy has been widely used by ophthalmologists in the diagnosis/monitoring of various retinal disorders. It is believed that fundus AF is derived from lipofuscin in retinal pigment epithelial (RPE) cells; however, direct clinicopathological correlation has not been possible in humans. We examined fundus AF by confocal scanning laser ophthalmoscopy and confocal microscopy in normal C57BL/6 mice of different ages. Increasingly strong AF signals were observed with age in the neuroretina and subretinal/RPE layer by confocal scanning laser ophthalmoscopy. Unlike fundus AF detected in normal human subjects, mouse fundus AF appeared as discrete foci distributed throughout the retina. Most of the AF signals in the neuroretina were distributed around retinal vessels. Confocal microscopy of retinal and choroid/RPE flat mounts demonstrated that most of the AF signals were derived from Iba-1+ perivascular and subretinal microglia. An age-dependent accumulation of Iba-1+ microglia at the subretinal space was observed. Lipofuscin granules were detected in large numbers in subretinal microglia by electron microscopy. The number of AF+ microglia and the amount of AF granules/cell increased with age. AF granules/lipofuscin were also observed in RPE cells in mice older than 12 months, but the number of AF+ RPE cells was very low (1.48 mm-2 and 5.02 mm-2 for 12 and 24 months, respectively) compared to the number of AF+ microglial cells (20.63 mm-2 and 76.36 mm-2 for 6 and 24 months, respectively). The fluorescence emission fingerprints of AF granules in subretinal microglia were the same as those in RPE cells. Our observation suggests that perivascular and subretinal microglia are the main cells producing lipofuscin in normal aged mouse retina and are responsible for in vivo fundus AF. Microglia may play an important role in retinal aging and age-related retinal diseases.
Resumo:
This paper reports the results of models of dark cloud chemistry incorporating a depth dependent density distribution with diffusive mixing and adsorption onto grains. The model is based on the approach taken by Xie et al. (1995), with the addition of grain accretion effects. Without diffusion, the central regions of the cloud freeze out in less than 10(7) years. Freeze-out time is dependent on density, so the diffuse outer region of the cloud remains abundant in gas for about an order of magnitude longer. We find that fairly small amounts of diffusive mixing can delay freeze-out at the centre of the model cloud for a time up to an order of magnitude greater than without diffusion, due to material diffusing inward from the edges of the cloud. The gas-phase lifetime of the cloud core can thus be increased by up to an order of magnitude or more by this process. We have run three different grain models with various diffusion coefficients to investigate the effects of changing the sticking parameters.
Resumo:
The research reported here is based on the standard laboratory experiments routinely performed in order to measure various geotechnical parameters. These experiments require consolidation of fine-grained samples in triaxial or stress path apparatus. The time required for the consolidation is dependent on the permeability of the soil and the length of the drainage path. The consolidation time is often of the order of several weeks in large clay-dominated samples. Long testing periods can be problematic, as they can delay decisions on design and construction methods. Acceleration of the consolidation process would require a reduction in effective drainage length and this is usually achieved by placing filter drains around the sample. The purpose of the research reported in this paper is to assess if these filter drains work effectively and, if not, to determine what modifications to the filter drains are needed. The findings have shown that use of a double filter reduces the consolidation time several fold.
Resumo:
This article describes the results of a comprehensive investigation to determine the link between process parameters and observed wall thickness output for the plug-assisted thermoforming process. The overall objective of the work was to systematically investigate the process parameters that may be adjusted during production to control the wall thickness distribution of parts manufactured by plug-assisted thermoforming. The parameters investigated were the sheet temperature, plug temperature, plug speed, plug displacement, plug shape, and air pressure. As well as quantifying the effects of each parameter on the wall thickness distribution, a further aim of the work was to improve the understanding of the physical mechanisms of deformation of the sheet during the different stages of the process. The process parameters shown to have the greatest effect on experimentally determined wall thickness distribution were the plug displacement, sheet temperature, plug temperature, and plug shape. It is proposed that during the plug-assisted thermoforming of polystyrene the temperature dependent friction between the plug and sheet surface was the most important factor in determining product wall thickness distribution, whereas heat transfer was shown to play a less important role. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers
Resumo:
One thousand two hundred pigs were weaned at 4 weeks of age and mixed to form groups of ten animals that were balanced for gender. The groups consisted of uniform weight groups (i.e. separate groups of small, medium or large pigs), or mixed weight groups (i.e. groups containing small, medium and large pigs). Half of the groups were retained from weaning until slaughter at 21 weeks of age, and half were regrouped at the start of the finishing period at 10 weeks of age. In this regrouping, uniform weight groups were regrouped to form mixed weight groups, and mixed weight groups were regrouped to form uniform weight groups. In addition, some mixed weight groups were regrouped to form mixed weight groups in order to assess the effect of regrouping at 10 weeks of age on performance and aggressive behaviour.
Resumo:
The development of artificial neural network (ANN) models to predict the rheological behavior of grouts is described is this paper and the sensitivity of such parameters to the variation in mixture ingredients is also evaluated. The input parameters of the neural network were the mixture ingredients influencing the rheological behavior of grouts, namely the cement content, fly ash, ground-granulated blast-furnace slag, limestone powder, silica fume, water-binder ratio (w/b), high-range water-reducing admixture, and viscosity-modifying agent (welan gum). The six outputs of the ANN models were the mini-slump, the apparent viscosity at low shear, and the yield stress and plastic viscosity values of the Bingham and modified Bingham models, respectively. The model is based on a multi-layer feed-forward neural network. The details of the proposed ANN with its architecture, training, and validation are presented in this paper. A database of 186 mixtures from eight different studies was developed to train and test the ANN model. The effectiveness of the trained ANN model is evaluated by comparing its responses with the experimental data that were used in the training process. The results show that the ANN model can accurately predict the mini-slump, the apparent viscosity at low shear, the yield stress, and the plastic viscosity values of the Bingham and modified Bingham models of the pseudo-plastic grouts used in the training process. The results can also predict these properties of new mixtures within the practical range of the input variables used in the training with an absolute error of 2%, 0.5%, 8%, 4%, 2%, and 1.6%, respectively. The sensitivity of the ANN model showed that the trend data obtained by the models were in good agreement with the actual experimental results, demonstrating the effect of mixture ingredients on fluidity and the rheological parameters with both the Bingham and modified Bingham models.
Resumo:
A non-linear lumped model of the reed-mouthpiece-lip system of a clarinet is formulated, in which the lumped parameters are derived from numerical experiments with a finite-difference simulation based on a distributed reed model. The effective stiffness per unit area is formulated as a function of the pressure signal driving the reed, in order to simulate the effects of the reed bending against the lay, and mass and damping terms are added as a first approximation to the dynamic behaviour of the reed. A discrete-time formulation is presented, and its response is compared to that of the distributed model. In addition, the lumped model is applied in the simulation of clarinet tones, enabling the analysis of the effects of using a pressure-dependent stiffness per unit area on sustained oscillations. The analysed effects and features are in qualitative agreement with players' experiences and experimental results obtained in prior studies.
Resumo:
In this article, we extend the earlier work of Freeland and McCabe [Journal of time Series Analysis (2004) Vol. 25, pp. 701–722] and develop a general framework for maximum likelihood (ML) analysis of higher-order integer-valued autoregressive processes. Our exposition includes the case where the innovation sequence has a Poisson distribution and the thinning is binomial. A recursive representation of the transition probability of the model is proposed. Based on this transition probability, we derive expressions for the score function and the Fisher information matrix, which form the basis for ML estimation and inference. Similar to the results in Freeland and McCabe (2004), we show that the score function and the Fisher information matrix can be neatly represented as conditional expectations. Using the INAR(2) speci?cation with binomial thinning and Poisson innovations, we examine both the asymptotic e?ciency and ?nite sample properties of the ML estimator in relation to the widely used conditional least
squares (CLS) and Yule–Walker (YW) estimators. We conclude that, if the Poisson assumption can be justi?ed, there are substantial gains to be had from using ML especially when the thinning parameters are large.
Resumo:
In this paper we reflect on the performer-instrument relationship by turning towards the thinking practices of the French philosopher Maurice Merleau-Ponty (1908-1961). Merleau-Ponty's phenomenological idea of the body as being at the centre of the world highlights an embodied position in the world and bestows significance onto the body as a whole, onto the body as a lived body. In order to better understand this two-way relationship of instrument and performer, we introduce the notion of the performative layer, which emerges through strategies for dealing with discontinuities, breakdowns and the unexpected in network performance.
Resumo:
When the dominant mechanism for ion acceleration is the laser radiation pressure, the conversion efficiency of the laser energy into the energy of relativistic ions may be very high. Stability analysis of a thin plasma layer accelerated by the radiation pressure shows that Raleigh-Taylor instability may enhance plasma inhomogeneity. In the linear stage of instability, the plasma layer decays into separate bunches, which are accelerated by the radiation pressure similarly to clusters accelerated under the action of an electromagnetic wave. The energy and luminosity of an ion beam accelerated in the radiation-pressure-dominated regime are calculated.
Resumo:
In this work we present the theoretical framework for the solution of the time-dependent Schrödinger equation (TDSE) of atomic and molecular systems under strong electromagnetic fields with the configuration space of the electron’s coordinates separated over two regions; that is, regions I and II. In region I the solution of the TDSE is obtained by an R-matrix basis set representation of the time-dependent wave function. In region II a grid representation of the wave function is considered and propagation in space and time is obtained through the finite-difference method. With this, a combination of basis set and grid methods is put forward for tackling multiregion time-dependent problems. In both regions, a high-order explicit scheme is employed for the time propagation. While, in a purely hydrogenic system no approximation is involved due to this separation, in multielectron systems the validity and the usefulness of the present method relies on the basic assumption of R-matrix theory, namely, that beyond a certain distance (encompassing region I) a single ejected electron is distinguishable from the other electrons of the multielectron system and evolves there (region II) effectively as a one-electron system. The method is developed in detail for single active electron systems and applied to the exemplar case of the hydrogen atom in an intense laser field.
Resumo:
Objective: Endothelial function may be impaired in critical illness. We hypothesized that impaired endothelium-dependent vasodilatation is a predictor of mortality in critically ill patients.
Design: Prospective observational cohort study.
Setting: Seventeen-bed adult intensive care unit in a tertiary referral university teaching hospital. Patients: Patients were recruited within 24 hrs of admission to the intensive care unit.
Interventions: The SphygmoCor Mx system was used to derive the aortic augmentation index from radial artery pulse pressure waveforms. Endothelium-dependent vasodilatation was calculated as the change in augmentation index in response to an endothelium-dependent vasodilator (salbutamol).
Measurements and Main Results: Demographics, severity of illness scores, and physiological parameters were collected. Statistically significant predictors of mortality identified using single regressor analysis were entered into a multiple logistic regression model. Receiver operator characteristic curves were generated. Ninety-four patients completed the study. There were 80 survivors and 14 nonsurvivors. The Simplified Acute Physiology Score II, the Sequential Organ Failure Assessment score, leukocyte count, and endothelium-dependent vasodilatation conferred an increased risk of mortality. In logistic regression analysis, endothelium-dependent vasodilatation was the only predictor of mortality with an adjusted odds ratio of 26.1 (95% confidence interval [CI], 4.3-159.5). An endothelium-dependent vasodilatation value of 0.5% or less predicted intensive care unit mortality with a sensitivity of 79% (CI, 59-88%) and specificity of 98% (CI, 94-99%).
Conclusions: In vivo bedside assessment of endothelium-dependent vasodilatation is an independent predictor of mortality in the critically ill. We have shown it to be superior to other validated severity of illness scores with high sensitivity and specificity.