941 resultados para Law of the sea


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Yellow Sea Warm Current (YSWC) is one of the principal currents in the Yellow Sea in winter. Former examinations on current activity in the Yellow Sea have not observed a stable YSWC because of the positioning of current meters. To further understand the YSWC, a research cruise in the southern Yellow Sea was carried out in the winter of 2006/2007. Five moorings with bottom-mounted acoustic Doppler current profilers (ADCP) were deployed on the western side of the central trough of the Yellow Sea. The existence and distributional features of the YSWC were studied by analyzing three ADCP moorings in the path of the YSWC in conjunction with conductivity-temperature-depth (CTD) data over the observed area in the southern Yellow Sea. The results show the following. (1) The upper layer of the YSWC is strongly influenced by winter cold surge; its direction and speed often vary along a south-north axis when strong cold surges arrive from the north. (2) The YSWC near the bottom layer is a stable northwest flowing current with a speed of 4 to 10 cm/s. By combining the analyses of the CTD data, we speculate that the core of the YSWC may lie near the bottom. (3) On a monthly average timescale, the YSWC is stably oriented with northward flow from the sea surface to the sea floor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Satellite and in situ observations in the equatorial Atlantic Ocean during 2002-03 show dominant spectral peaks at 40-60 days and secondary peaks at 10-40 days in sea level and thermocline within the intraseasonal period band (10-80 days). A detailed investigation of the dynamics of the intraseasonal variations is carried out using an ocean general circulation model, namely, the Hybrid Coordinate Ocean Model (HYCOM). Two parallel experiments are performed in the tropical Atlantic Ocean basin for the period 2000-03: one is forced by daily scatterometer winds from the Quick Scatterometer (QuikSCAT) satellite together with other forcing fields, and the other is forced by the low-passed 80-day version of the above fields. To help in understanding the role played by the wind-driven equatorial waves, a linear continuously stratified ocean model is also used. Within 3 degrees S-3 degrees N of the equatorial region, the strong 40-60-day sea surface height anomaly (SSHA) and thermocline variability result mainly from the first and second baroclinic modes equatorial Kelvin waves that are forced by intraseasonal zonal winds, with the second baroclinic mode playing a more important role. Sharp 40-50-day peaks of zonal and meridional winds appear in both the QuikSCAT and Pilot Research Moored Array in the Tropical Atlantic (PIRATA) data for the period 2002-03, and they are especially strong in 2002. Zonal wind anomaly in the central-western equatorial basin for the period 2000-06 is significantly correlated with SSHA across the equatorial basin, with simultaneous/ lag correlation ranging from-0.62 to 0.74 above 95% significance. Away from the equator (3 degrees-5 degrees N), however, sea level and thermocline variations in the 40-60-day band are caused largely by tropical instability waves (TIWs). On 10-40-day time scales and west of 10 degrees W, the spectral power of sea level and thermocline appears to be dominated by TIWs within 5 degrees S-5 degrees N of the equatorial region. The wind-driven circulation, however, also provides a significant contribution. Interestingly, east of 10 W, SSHA and thermocline variations at 10 40- day periods result almost entirely from wind-driven equatorial waves. During the boreal spring of 2002 when TIWs are weak, Kelvin waves dominate the SSHA across the equatorial basin (2 degrees S-2 degrees N). The observed quasi-biweekly Yanai waves are excited mainly by the quasi-biweekly meridional winds, and they contribute significantly to the SSHA and thermocline variations in 1 degrees-5 degrees N and 1 degrees-5 degrees S regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The response of the South China Sea (SCS) to Typhoon Imbudo was examined using POM model. The results indicated that SST decreased by 2-6 degrees C with a rightward-biased response as Typhoon Imbudo passed across the SCS. Due to a strong mixing process, the mixed layer (ML) depth deepened as much as 10-60 m and ML heat budget lost 824.78 W/m(2), which was OF dominated by the vertical mixing. By the response of upper ML heat transport, the temperature below the ML increased and oscillated near the inertial period. Furthermore, strong inertial currents were generated by the storm with the max currents up to 1.4 m/s in the upper ML.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effective dielectric response of graded spherical composites having general power-law gradient inclusions is investigated under a uniform applied electric field, where the dielectric gradation profile of the spherical inclusions is modeled by the equation epsilon(i) (r) = c(b+r)(k). Analytical solutions of the local electrical potentials are derived in terms of hyper-geometric function and the effective dielectric response of the graded composites is predicted in the dilute limit. From our result, the local potentials of graded spherical composites having both simple power-law dielectric profile epsilon(i)(r) = cr(k) and linear dielectric profile epsilon(i) (r) = c(b+r) are derived exactly by taking the limits b --> 0 and k --> 1, respectively. In the dilute limit, our exact result is used to test the validity of differential effective dipole approximation (DEDA) for estimating the effective response of graded spherical composites, and it is shown that the DEDA is in excellent agreement with exact result. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fine-grid model (1/6degrees) covering the South China Sea (SCS), East China Sea and Japan/East Sea, which is embedded into a coarse-grid (3degrees) global model, was established to study the SCS circulation. In the present paper, we report the model-produced monthly and annual mean transport stream functions and sea surface heights(SSH) and their anomalies of the SCS. Comparison to the TOPEX/Poseidon data shows that the model-produced monthly sea surface height anomalies (SSHA) are in good agreement with altimeter measurements. Based on the results, the circulation of the SCS, especially the upper layer circulation, is discussed. In the surface layer, the western Philippine Sea water intrudes into the SCS through the Luzon Strait in autumn, winter and spring, but not in summer. However, as far as the whole water column is concerned, the water intrudes into the SCS through the Luzon Strait all the year round. This indicates that in summer the water still intrudes into the SCS in the subsurface and intermediate layers. The area near the northern continental slope of the SCS is dominated by a cyclonic circulation all the year round. The SCS Southern Anticyclonic Gyre, SE Vietnam Off-Shore Current in summertime and SCS Southern Cyclonic Gyre in wintertime are reproduced reasonably. The difference between the monthly averaged SSH and SSHA is significant, indicating the importance of the mean SSH in the SCS circulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mean sea surface heights (sea surface topography) of the South China, East China, Yellow and Bohai Seas are derived from an ocean general circulation model and surface air pressure. The circulation model covers the global oceans, with fine grid (1/6degrees) covering the East Asian marginal seas and coarse grid (31) covering the rest part of the global oceans. The result shows that the China 1985 National Altitude Datum is 24.7 cm above the me-an sea surface height of the world oceans. The mean sea surface in the coastal ocean adjacent to China is higher in the south than in the north. Intercomparison of the model results with the geodetic leveling measurements at 28 coastal tidal stations shows a standard deviation of 4.8 cm and a fitting coefficient of 95.3%. After correction through linear regression, the standard deviation is reduced to 4.5 cm. This indicates that the accuracy of model results is sufficient for practical application. Based on the model results, the mean sea surface heights for the study area with a resolution of 1/6 degree are given. This result also links the mean sea levels at islands with those on the mainland coast and gives the mean sea surface heights at tidal stations in the Taiwan Island, the Dongsha Islands, the Yisha Islands and the Nansha Islands relative to the China 1985 National Altitude Datum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analysis of the water level and current data taken in Qiongzhou Strait in the South China Sea (SCS) over the last 37 years (1963 to 1999) was made to examine the characteristics of tidal waves and residual flow through the strait and their roles in the seasonal variation of the SCS circulation. The observations reveal that Qiongzhou Strait is an area where opposing tidal waves interact and a source of water transport to the Gulf of Beibu (Gulf of Tonkin), SCS. A year-round westward mean flow with a maximum speed of 10-40 cm s(-1) is found in Qiongzhou Strait. This accounts for water transport of 0.2-0.4 Sv and 0.1-0.2 Sv into the Gulf of Beibu in winter-spring and summer-autumn, respectively. The outflow from Qiongzhou Strait may cause up to 44% of the gulf water to be refreshed each season, suggesting that it has a significant impact on the seasonal circulation in the Gulf of Beibu. This finding is in contrast to our current understanding that the seasonal circulation patterns in the South China Sea are primarily driven by seasonal winds. Several numerical experiments were conducted to examine the physical mechanisms responsible for the formation of the westward mean flow in Qiongzhou Strait. The model provides a reasonable simulation of semidiurnal and diurnal tidal waves in the strait and the predicted residual flow generally agrees with the observed mean flow. An analysis of the momentum equations indicates that the strong westward flow is driven mainly by tidal rectification over variable bottom topography. Both observations and modeling suggest that the coastal physical processes associated with tidal rectification and buoyancy input must be taken into account when the mass balance of the SCS circulation is investigated, especially for the regional circulation in the Gulf of Beibu.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct air-sea flux measurements were made on RN Kexue #1 at 40 degrees S, 156 degrees E during the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean-Atmospheric Response Experiment (COARE) Intensive Observation Period (IOP). An array of six accelerometers was used to measure the motion of the anchored ship, and a sonic anemometer and Lyman-alpha hygrometer were used to measure the turbulent wind vector and specific humidity. The contamination of the turbulent wind components by ship motion was largely removed by an improvement of a procedure due to Shao based on the acceleration signals. The scheme of the wind correction for ship motion is briefly outlined. Results are presented from data for the best wind direction relative to the ship to minimize flow distortion effects. Both the time series and the power spectra of the sonic-measured wind components show swell-induced ship motion contamination, which is largely removed by the accelerometer correction scheme, There was less contamination in the longitudinal wind component than in the vertical and transverse components. The spectral characteristics of the surface-layer turbulence properties are compared with those from previous land and ocean results, Momentum and latent heat fluxes were calculated by eddy correlation and compared to those estimated by the inertial dissipation method and the TOGA COARE bulk formula. The estimations of wind stress determined by eddy correlation are smaller than those from the TOGA COARE bulk formula, especially for higher wind speeds, while those from the bulk formula and inertial dissipation technique are generally in agreement. The estimations of latent heal flux from the three different methods are in reasonable agreement. The effect of the correction for ship motion on latent heat fluxes is not as large as on momentum fluxes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hydrodynamic-thermodynamic equation set was set up to reflect the formational mechanism and evolution of the Northern Yellow (Huanghai) Sea cold water mass (NYSCWM) and its density circulation. Appropriate mathematical physical models were established by using some physical postulations. An approximate analytic solution to expound the distributions of temperature and three-dimensional current velocity, which can be used to expound the formational mechanism of the NYSCWM and its density circulation is obtained by using the theory of boundary layer and perturbational analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The theoretical solution of the model of the Northern Yellow (Huanghai) Sea Cold Water Mass (NYSCWM) reveals that the NYSCWM is mainly formed through the continuous temperature increase of the overwintered water body above the Northern Yellow Sea Depression (NYSD) after spring when heat is continuously conducted from the sea surface to the deeper layer. In the NYSCWM's growing period, (June-July), nonlinear vertical convection and advection effects continuously increase, and are gradually balanced by the heat diffusion effect as the temperature increases from the surface to the bottom, which leads to the formation of an intensive thermocline and lateral front. Meanwhile, the three-dimensional circulation correspondingly occurs. In the NYSCWM's entire growing period, the horizontal circulation is always in the cyclonic motion, while the vertical circulation passes through a transition from a period with the cold centre as downwelling to a period with the cold centre as upwelling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use the hydrographic data obtained during the joint survey of the Yellow Sea by the First Institute of Oceanography, China and the Korea Ocean Research and Development Institute, Korea, to quantify the spatial structures and temporal evolution of the southern Yellow Sea Cold Water Mass (YSCWM). It is indicated that the southern YSCWM is a water mass that develops in summer and decays in fall. In winter, due to the intrusion of the Yellow Sea Warm Current (YSWC), the central area (approximately between 34 degrees N and 35 degrees N, 122 degrees E and 124 degrees E) of the Yellow Sea is mainly occupied by relatively high temperature water (T > 10 degrees C). By contrast, from early summer to fall, under the seasonal thermocline, the central area of Yellow Sea is occupied by cold water (T < 10 degrees C). In summer, the southern YSCWM has two cold cores. One is formed locally southeast of Shandong Peninsula, and the other one has a tongue-like feature occupying the area approximately between 34 degrees N and 37 degrees N, 123 degrees E and 126 degrees E. The bottom layer temperature anomalies from February to July in the cold tongue region, along with the trajectories of the bottom floaters, suggest that the cold water mass in the northeast region has a displacement from the north to the central area of the Yellow Sea during the summer. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean surface waves are strongly forced by high wind conditions associated with winter storms in the Sea of Japan. They are also modulated by tides and storm surges. The effects of the variability in surface wind forcing, tides and storm surges on the waves are investigated using a wave model, a high-resolution atmospheric mesoscale model and a hydrodynamic ocean circulation model. Five month-long wave model simulations are inducted to examine the sensitivity of ocean waves to various wind forcing fields, tides and storm surges during January 1997. Compared with observed mean wave parameters, results indicate that the high frequency variability in the surface wind filed has very great effect on wave simulation. Tides and storm surges have a significant impact on the waves in nearshores of the Tsushima-kaihyo, but not for other regions in the Sea of Japan. High spatial and temporal resolution and good quality surface wind products will be crucial for the prediction of surface waves in the JES and other marginal seas, especially near the coastal regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper, correlation between the South China Sea summer monsoon (SCSSM) onset and heat content in the upper layer of the warm pool in the western Pacific Ocean is examined using the Scripps Institution of Oceanography dataset for the period of 1955-1998 and an approach to prediction the SCSSM onset is proposed. Correlation showes that there exists interdecadal variability of the SCSSM onset demarcated by 1970 with the largest correlation coefficient in the area west of the center of the warm pool rather than near its centers, implying certain effect from other factors involved besides ENSO. As the correlation is poor for the period before 1970, the heat content anomaly of the warm pool after 1970 is used to indicate early or late onset of the SCSSM beforehand. An ideal representative area (1A degrees x1A degrees) for the warm pool heat content was determined with its center at 3A degrees N/138A degrees E. The nearest TAO (TAO-Tropical Atmosphere Ocean-array) mooring to the center is at 2A degrees N/137A degrees E, and chosen to calculate the heat content for prediction. It is suggested that the TAO mooring at 2A degrees N/137A degrees E could be used to predict the SCSSM onset with the heat content in the upper layer, if the correlation between the SCSSM onset and the heat content of the warm pool runs like that of after 1970. On the other hand, if the situation does like the one before 1970, the representative station is determined at 13A degrees S/74A degrees E with relatively poor correlation, meaning that the warm pool in the western Pacific Ocean plays more important role in the SCSSM onset than the Indian Ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sectional velocity distribution of the East China Sea Kuroshio is one of the basic points in the study of the Kuroshio. Hydrographic temperature and salinity data at G-PN section in the East China Sea from June 1955 to November 2001 are collected and properly processed to calculate the geostrophic current using dynamic height method at the transect of the Kuroshio. After analysis of calculation results, the basic current structure of the Kuroshio in its main part is examined together with scalar estimate and characters of multi- core structure, and spacial-temporal variations of current cores' position. Main result shows that (1) single-core structure, double-core structure and multi-core structure are basic forms in axial part of the Kuroshio; (2) abvious temporal variations exist in current structure of the Kuroshio; (3) the current of structure of the Kuroshio has distinctly seasonal association. The number of current cores is on the high side of core numbers in average and multi-core stucture appears in fall mostly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large amplitude internal solitary waves (ISWs) often exhibit highly nonlinear effects and may contribute significantly to mixing and energy transporting in the ocean. We observed highly nonlinear ISWs over the continental shelf of the northwestern South China Sea (19A degrees 35'N, 112A degrees E) in May 2005 during the Wenchang Internal Wave Experiment using in-situ time series data from an array of temperature and salinity sensors, and an acoustic Doppler current profiler (ADCP). We summarized the characteristics of the ISWs and compared them with those of existing internal wave theories. Particular attention has been paid to characterizing solitons in terms of the relationship between shape and amplitude-width. Comparison between theoretical prediction and observation results shows that the high nonlinearity of these waves is better represented by the second-order extended Korteweg-de Vries (KdV) theory than the first-order KdV model. These results indicate that the northwestern South China Sea (SCS) is rich in highly nonlinear ISWs that are an indispensable part of the energy budget of the internal waves in the northern South China Sea.