961 resultados para Last deglaciation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past few decades the impacts of climate warming have been significant in alpine glaciated regions. Many valley glaciers formerly linked as distributary glaciers to high-level icecaps have decoupled at their icefalls, exposing major escarpments and generating a suite of dynamic landforrns dominated by mass wasting. Ice-dominated landforms, here termed icy debris fans, develop rapidly by ice avalanching, rockfall, and icy debris flow. Field-based reconnaissance studies at two alpine settings, the Wrangell Mountains of Alaska and the Southern Alps of New Zealand, provide a preliminary morphogenetic model of spatial and temporal evolution of icy debris fans in a range of alpine settings. The influence of these processes on landform evolution is largely unrecognized in the literature dealing with post-glacial landform adjustment known as the paraglacial. A better understanding of these dynamic processes will be increasingly important because of the extreme geohazards characterizing these areas. Our field studies show that after glacier decoupling, icy debris fans begin to form along the base of bedrock escarpments at the mouths of catchments and prograde over valley glaciers. The presence of a distinct catchment, apex, and fan morphology distinguishes these landforms from other landforms common in periglacial hillslope settings receiving abundant clastic debris and ice. Ice avalanching is the most abundant process involved in icy debris fan formation. Fans developed below weakly incised catchments are dominated by ice avalanching and are composed primarily of ice with minor lithic detritus. Typically, avalanches fall into the fan catchments where sediments transform into grainflows that flow onto the fans. Once on the fans, avalanche deposits ablate rapidly, flattening and concentrating lithic fragments at the surface. Icy debris fans may become thick enough to become glaciers with splay crevasse systems. Fans developed below larger, more complex catchments are composed of higher proportions of lithic detritus resulting from temporary storage of ice and lithic detritus deposits within the catchment. Episodic outbursts of meltwater from the icecap may mix with the stored sediments and mobilize icy debris flows (mixture of ice and lithic clasts) onto the fans. Our observations indicate that the entire evolutionary cycle of icy debris fans probably occurs during an early paraglacial interval (i.e., decades to 100 years). Observations comparing avalanche frequency, volume, and fan morphologic evolution at the Alaska site between 2006 and 2010 illustrate complex response between icy debris fans even within the same cirque - where one fan may be growing while others are downwasting because of differences in ice supply controlled by their respective catchments and icecap contributions. As ice supply from the icecap diminishes through time, icy debris fans rapidly downwaste and eventually evolve into talus cones that receive occasional but ephemeral ice avalanches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The latitudinal position of the southern westerlies has been suggested to be a key parameter for the climate on Earth. According to the general notion, the southern westerlies were shifted equatorward during the global Last Glacial Maximum (LGM: ~24–18 ka), resulting in reduced deep ocean ventilation, accumulation of old dissolved carbon, and low atmospheric CO2 concentrations. In order to test this notion, we applied surface exposure dating on moraines in the southern Central Andes, where glacial mass balances are particularly sensitive to changes in precipitation, i.e. to the latitudinal position of the westerlies. Our results provide robust evidence that the maximum glaciation occurred already at ~39 ka, significantly predating the global LGM. This questions the role of the westerlies for atmospheric CO2, and it highlights our limited understanding of the forcings of atmospheric circulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variability of the Atlantic meridional overturing circulation (AMOC) strength is investigated in control experiments and in transient simulations of up to the last millennium using the low-resolution Community Climate System Model version 3. In the transient simulations the AMOC exhibits enhanced low-frequency variability that is mainly caused by infrequent transitions between two semi-stable circulation states which amount to a 10 percent change of the maximum overturning. One transition is also found in a control experiment, but the time-varying external forcing significantly increases the probability of the occurrence of such events though not having a direct, linear impact on the AMOC. The transition from a high to a low AMOC state starts with a reduction of the convection in the Labrador and Irminger Seas and goes along with a changed barotropic circulation of both gyres in the North Atlantic and a gradual strengthening of the convection in the Greenland-Iceland-Norwegian (GIN) Seas. In contrast, the transition from a weak to a strong overturning is induced by decreased mixing in the GIN Seas. As a consequence of the transition, regional sea surface temperature (SST) anomalies are found in the midlatitude North Atlantic and in the convection regions with an amplitude of up to 3 K. The atmospheric response to the SST forcing associated with the transition indicates a significant impact on the Scandinavian surface air temperature (SAT) in the order of 1 K. Thus, the changes of the ocean circulation make a major contribution to the Scandinavian SAT variability in the last millennium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulations of climate over the Last Millennium (850–1850 CE) have been incorporated into the third phase of the Paleoclimate Modelling Intercomparison Project (PMIP3). The drivers of climate over this period are chiefly orbital, solar, volcanic, changes in land use/land cover and some variation in greenhouse gas levels. While some of these effects can be easily defined, the reconstructions of solar, volcanic and land use-related forcing are more uncertain. We describe here the approach taken in defining the scenarios used in PMIP3, document the forcing reconstructions and discuss likely implications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The link between the atmospheric CO2 level and the ventilation state of the deep ocean is an important building block of the key hypotheses put forth to explain glacial-interglacial CO2 fluctuations. In this study, we systematically examine the sensitivity of atmospheric CO2 and its carbon isotope composition to changes in deep ocean ventilation, the ocean carbon pumps, and sediment formation in a global 3-D ocean-sediment carbon cycle model. Our results provide support for the hypothesis that a break up of Southern Ocean stratification and invigorated deep ocean ventilation were the dominant drivers for the early deglacial CO2 rise of ~35 ppm between the Last Glacial Maximum and 14.6 ka BP. Another rise of 10 ppm until the end of the Holocene is attributed to carbonate compensation responding to the early deglacial change in ocean circulation. Our reasoning is based on a multi-proxy analysis which indicates that an acceleration of deep ocean ventilation during early deglaciation is not only consistent with recorded atmospheric CO2 but also with the reconstructed opal sedimentation peak in the Southern Ocean at around 16 ka BP, the record of atmospheric δ13CCO2, and the reconstructed changes in the Pacific CaCO3 saturation horizon.