976 resultados para Laser-produced plasma
Resumo:
In this paper the large-scale mass transport mechanism is used to microstructure azopolymeric films, aiming at controllable hydrophobic surfaces. Using an Ar(+) laser with intensity of 70 mW/cm(2), we produced egg-crate-like surfaces with periods from 1.0 to 3.5 mu m that present distinct wetting properties. The static contact angle of water was measured on the microstructured surfaces, and the results revealed an increase of approximately 9 degrees for a surface pattern period of 2 mu m. Our results indicate the use of the microstructuring method described here for the fabrication of devices with controllable hydrophobicity.
Resumo:
This study evaluated the process of ablation produced by a Ti:Sapphire femtosecond laser under different average powers taking place at the enamel/dentin interface. Based on the geometry of ablated microcavities the effective intensity for ablation was obtained. This study shows the validity for the local effective intensity analysis and allows a quantification of the variation in the ablation geometry taking place at the interface of two naturally different materials. It shows that the variation of the diameter of the ablated region as a function of the cavity depth comes essentially from a mechanism of effective intensity attenuation, as a result of a series of complex effects. Additionally, our data are sufficient to predict that a discontinuity on the ablation profile will occur on the interface between two biological media: enamel-dentin, showing a suddenly jump on the ablated cavity dimensions.
Resumo:
Felsic microgranular enclaves with structures indicating that they interacted in a plastic state with their chemically similar host granite are abundant in the Maua Pluton, SE Brazil. Larger plagioclase xenocrysts are in textural disequilibrium with the enclave groundmass and show complex zoning patterns with partially resorbed An-rich cores (locally with patchy textures) surrounded by more sodic rims. In situ laser ablation-(multi-collector) inductively coupled plasma mass spectrometry trace element and Sr isotopic analyses performed on the plagioclase xenocrysts indicate open-system crystallization; however, no evidence of derivation from more primitive basic melts is observed. The An-rich cores have more radiogenic initial Sr isotopic ratios that decrease towards the outermost part of the rims, which are in isotopic equilibrium with the matrix plagioclase. These profiles may have been produced by either (1) diffusional re-equilibration after rim crystallization from the enclave-forming magma, as indicated by relatively short calculated residence times, or (2) episodic contamination with a decrease of the contaminant ratio proportional to the extent to which the country rocks were isolated by the crystallization front. Profiles of trace elements with high diffusion coefficients would require unrealistically long residence times, and can be modeled in terms of fractional crystallization. A combination of trace element and Sr isotope data suggests that the felsic microgranular enclaves from the Maua Pluton are the products of interaction between end-member magmas that had similar compositions, thus recording `self-mixing` events.
Resumo:
A soil microorganism identified as Bacillum megaterium was found to produce several antibiotics substances after growth for 20 h at 37A degrees C in a mineral culture medium. Analysis both by electron spray ionization (ESI) and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) identified these substances as lipopeptides. Predominant peaks at m/z 1,041 and m/z 1,065 revealed ions which are compatible with surfactins and lichenysins, respectively. Two other ions m/z 1,057 and m/z 1,464 were further studied by collision-induced dissociation (CID) unveiling an iturin A at the first and fengycins A and B at the second m/z peaks. The CID spectrum of the m/z 1,464 ion also suggests the existence of fengycins A and B variants in which Ile was changed to Val in the position 10 of the peptide moiety. Raw mixtures of all these compounds were also assayed for antibiotic features. The data enlighten the unusual diversity of the lipopeptide mixture produced by a sole Bacillus species.
Resumo:
SILVA, J. S. P. Estudo das características físico-químicas e biológicas pela adesão de osteoblastos em superfícies de titânio modificadas pela nitretação em plasma. 2008. 119 f. Tese (Doutorado) - Faculdade de Medicina, Universidade de São Paulo. São Paulo, 2008.
Resumo:
Ta-Cu bulk composites combine high mechanical resistance of the Ta with high electrical and thermal conductivity of the Cu. These are important characteristics to electrical contacts, microwave absorber and heat skinks. However, the low wettability of Ta under Cu liquid and insolubility mutual these elements come hard sintering this composite. High-energy milling (HEM) produces composite powders with high homogeneity and refines the grain size. This work focus to study Ta-20wt%Cu composite powders prepared by mechanical mixture and HEM with two different conditions of milling in a planetary ball mill and then their sintering using hydrogen plasma furnace and a resistive vacuum furnace. After milling, the powders were pressed in a steel dye at a pressure of 200 MPa. The cylindrical samples pressed were sintered by resistive vacuum furnace at 10-4torr with a sintering temperature at 1100ºC / 60 minutes and with heat rate at 10ºC/min and were sintered by plasma furnace with sintering temperatures at 550, 660 and 800ºC without isotherm under hydrogen atmosphere with heat rate at 80ºC/min. The characterizations of the powders produced were analyzed by scanning electron microscopy (SEM), x-ray diffraction (XRD) and laser granulometry. After the sintering the samples were analyzed by SEM, XRD and density and mass loss tests. The results had shown that to high intense milling condition produced composite particles with shorter milling time and amorphization of both phases after 50 hours of milling. The composite particles can produce denser structure than mixed powders, if heated above the Cu melting point. After the Cu to arrive in the melting point, liquid copper leaves the composite particles and fills the pores
Resumo:
Interstitial compounds of titanium have been mainly studied due to the large range of properties acquired when C, N, O and H atoms are added. In this work, surfaces of TiCxNy were produced by thermochemical treatments assisted by plasma with different proportions of Ar + N2 + CH4 gas mixture. The Ar gas flow was fixed in 4 sccm, varying only N2 and CH4 gas flows. During the thermochemical treatment, the plasma was monitored by Optical Emission Spectroscopy (OES) for the investigation of the influence of active species. After treatments, C and N concentration profile, crystalline and amorphous phases were analyzed by Nuclear Reaction (NRA). Besides tribomechanical properties of the Ti surface were studied through the nanohardness measurements and friction coefficient determination. The worn areas were evaluated by profilometry and Scanning Electronic Microscope (SEM) in order to verify the wear mechanism present in each material. It has been seen which the properties like nanohardness and friction coefficient have strong relation with luminous intensity of species of the plasma, suggesting a using of this characteristic as a parameter of process
Resumo:
Metallic tantalum has a high commercial value due to intrinsic properties like excellent ductility, corrosion resistance, high melt and boiling points and good electrical and thermal conductivities. Nowadays, it is mostly used in the manufacture of capacitors, due to excellent dielectric properties of its oxides. In the nature, tantalum occurs in the form of oxide and it is extracted mainly from tantalite-columbite ores. The tantalum is usually produced by the reduction of its oxide, using reductants like carbon, silicon, calcium, magnesium and aluminum. Among these techniques, the aluminothermic reduction has been used as the industrial method to produce niobium, tantalum and their alloys, due to the easy removal of the Al and Al2O3 of the system, easing further refining. In conventional aluminothermic reduction an electrical resistance is used to trigger the reaction. This reaction self-propagates for all the volume of material. In this work, we have developed a novel technique of aluminothermic reduction that uses the hydrogen plasma to trigger the reaction. The results obtained by XRD, SEM and EDS show that is possible to obtain a compound rich in tantalum through this technique of aluminothermic reduction in the plasma reactor
Resumo:
Bacterial cellulose (BC) has a wide range of potential applications, namely as temporary substitute skin in the treatment of skin wounds, such as burns, ulcers and grafts. Surface properties determine the functional response of cells, an important factor for the successful development of biomaterials. This work evaluates the influence of bacterial cellulose surface treatment by plasma (BCP) on the cellular behavior and its genotoxicity potential. The modified surface was produced by plasma discharge in N2 and O2 atmosphere, and the roughness produced by ion bombardment characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Cell adhesion, viability and proliferation on BCP were analysed using crystal violet staining and the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium (MTT) method. Genotoxicity was evaluated using the comet and cytokinesis block micronucleus assay. The results show that the plasma treatment changed surface roughness, producing an ideal cell attachment, evidenced by more elongated cell morphology and improved proliferation. The excellent biocompatibility of BCP was confirmed by genotoxicity tests, which showed no significant DNA damage. The BCP has therefore great potential as a new artificial implant
Resumo:
The aluminothermic reduction consists in an exothermic reaction between a metallic oxide and aluminum to produce the metal and the scum. The extracted melted metal of that reaction usually comes mixed with particles of Al2O3 resulting of the reduction, needing of subsequent refine to eliminate the residual impure as well as to eliminate porosities. Seeking to obtain a product in powder form with nanometric size or even submicrometric, the conventional heat source of the reaction aluminothermic , where a resistor is used (ignitor) as ignition source was substituted, for the plasma, that acts more efficient way in each particle of the sample. In that work it was used as metallic oxide the niobium pentoxide (Nb2O5) for the exothermal reaction Nb2O5 + Al. Amounts stoichiometric, substoichiometric and superestoichiometric of aluminum were used. The Nb2O5 powder was mixed with aluminum powder and milled in planetarium of high energy for a period of 6 hours. Those powders were immerged in plasm that acts in a punctual way in each particle, transfering heat, so that the reaction can be initiate and spread integrally for the whole volume of the particle. The mixture of Nb2O5 + Al was characterized through the particle size analysis by laser and X-ray diffraction (DRX) and the obtained product of reaction was characterized using the electronic microscopy of sweeping (MEV) and the formed phases were analyzed by DRX. Niobium powders with inferior sizes to 1 mm were obtained by that method. It is noticed, through the analysis of the obtained results, that is possible to accomplish the aluminothermic reduction process by plasma ignition with final particles with inferior sizes to the original oxide
Resumo:
The plasma produced by Dielectric Barrier Discharge (DBD) is a promising technique for producing plasma in atmospheric pressure and has been highlighted in several areas, especially in biomedical and textile industry, this is due to the fact that the plasma generated by DBD not reaches high temperatures, enabling use it for thermally sensitive materials. But still it is necessary the development of research related to understanding of the chemical, physical and biological interaction between the non-thermal plasma at atmospheric pressure with cells, tissues, organs and organisms. This work proposes to develop equipment DBD and characterize it in order to obtain a better understanding of the process parameters of plasma production and how it behaves under the parameters adopted in the process, such as distance, frequency and voltage applied between electrodes. For this purpose two techniques were used to characterize distinct from each other. The first was the method of Lissajous figures, this technique is quite effective and accurately for complete electrical characterization equipment DBD. The second technique used was Optical Emission Spectroscopy (EEO) very effective tool for the diagnosis of plasma with it being possible to identify the excited species present in the plasma produced. Finally comparing the data obtained by the two techniques was possible to identify a set of parameters that optimize the production when combined DBD plasma atmosphere in the equipment was built precisely in this condition 0.5mm-15kV 600Hz, giving way for further work
Resumo:
Low level laser therapy (LLLT) is known for its positive results but studies on the biological and biomodulator characteristics of the effects produced in the skeletal muscle are Still lacking. In this Study the effects of two laser dosages, 5 or 10 J/cm(2), on the lesioned tibial muscle were compared. Gerbils previously lesioned by 100 g load impact were divided into three groups: GI (n = 5) controls, lesion non-irradiated; GII (n = 5), lesion irradiated with 5 J/Cm(2) and GIII (n = 5), lesion irradiated with 10 J/cm(2), and treated for 7 consecutive days with a laser He-Ne (lambda = 633 rim). After intracardiac perfusion, the muscles were dissected and reduced to small fragments, post-fixed in 1% osmium tetroxide, dehydrated in increasing alcohol concentrations, treated with propylene oxide and embedded in Spurr resin at 60 degrees C. Ultrafine Cuts examined on a transmission electron microscope (Jeol 1010) revealed in the control GI group a large number of altered Muscle fibers with degenerating mitochondria, intercellular substance containing degenerating cell fragments and budding blood capillaries with Underdeveloped endothelial cells. However, groups GII and GIII showed muscle fibers with few altered myofibrils, regularly contoured mitochondria, ample intermembrane spaces and dilated mitochondrial crests. The clean intercellular Substance showed numerous collagen fibers and capillaries with multiple abluminal processes, intraluminal protrusions and several pinocytic vesicles in endothelial cells. it was concluded that laser dosages of 5 or 10 J/cm(2) delivered by laser He-Ne (lambda = 633 rim) during 7 consecutive days increase mitochondrial activity in muscular fibers, activate fibroblasts and macrophages and stimulate angiogenesis, thus suggesting effectivity of laser therapy tinder these experimental conditions. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Amorphous hydrogenated chlorinated carbon (a-C:H:Cl) films were produced by the plasma polymerization of chloroform-acetylene-argon mixtures in a radiofrequency plasma enhanced chemical vapor deposition system. The main parameter of interest was the proportion of chloroform in the feed, R(C), which was varied from 0 to 80%. Deposition rates of 80 nm min (1) were typical for the chlorinated films. Infrared reflection-absorption spectroscopy revealed the presence of C-Cl groups in all the films produced with chloroform in the feed. X-ray photoelectron spectroscopy confirmed this finding, and revealed a saturation of the chlorine content at similar to 47 at.% for R(C)>= 40%. The refractive index and optical gap, E(04), of the films were roughly in the 1.6 to 1.7, and the 2.8 to 3.7 eV range. These values were calculated from transmission ultraviolet-visible-near infrared spectra. Chlorination leads to an increase in the water surface contact angle from similar to 40 degrees to similar to 77 degrees. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Silicon carbide (SiC) has been employed in many different fields such as ballistic armor, thermal coating, high performance mirror substrate, semiconductors devices, among other things. Plasma application over the silicon carbide ceramics is relatively recent and it is able to promote relevant superficial modifications. Plasma expander was used in this work which was supplied by nitrogen and switched by a capacitor bank. Nitrogen plasma was applied over ceramic samples for 20 minutes, in a total medium of 1440 plasma pulses. SiC ceramics were produced by uniaxial pressing method (40 MPa) associated to isostatic pressing (300 MPa) and sintered at 1950 degrees C under argon gas atmosphere. Silicon carbide (beta-sic - BF-12) supplied by HC-Starck and sintering additive (7.6% YAG - Yttrium Aluminum Garnet) were used in order to obtain the ceramics. Before and after the plasma application, the samples were characterized by SEM, AFM, contact angle and surface energy measurement.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)