998 resultados para Laser transitions
Resumo:
The central theme of this research concerns the study of vibrationally excited molecules. We have used the local mode description of such vibrational states, and this -model has now gained general acceptance. A central feature of the model is the Wloealizafion of vibrational energy. A study of these high—energy localized states provides example, becauseof this localization, overtone spectra, which measure the absorption of T vibrational energy, are extremely sensitive to the properties of X-H bonds. We also use -overtone spectra to study the conformation of molecules, i.e., the relative internal orientation of their bonds. The thesis comprises six chapters
Resumo:
Electrical gas discharges have been the subject of numerous investigations from the last century due to their growing interest in technological and fundamental applications. Absorption of electromagnetic radiation by a gas discharge result into a change in electrical impedance due to a significant perturbations in the steady state population of excited levels and the degree of ionization. This change in impedance produced by resonant absorption of radiation is known as optogalvanic COG) effect. where as that is produced by injecting electrons in to the discharge by photoelectric emission is usually known as photoemission optogalvanic (FOG) effect. With the development of lasers and sophisticated electronic equipment. these effects have established their importance in analytical and spectroscopic measurements. The present thesis deals with the work carried out by the author in the field optogalvanic effect during the past few years at the Department of Physics in Cochin University of Science| and "Fechnology. The results and the observation are summarized in nine chapters and the references to the literature is made at the end of each chapter
Resumo:
In the pre—laser era it was difficult to believe that the optical properties of a medium depend upon the intensity of the radiation incident on it. The basis for this conclusion is that the electric field strength associated with the conventional light sources used before the advent of lasers was much smaller than (103 V/cm) the field sttrengths of atomic or interatomic fields (2 107 —- 10” V/cm). The radiation with such low intensity is not able to affect atomic fields to the extent of changing optical parameters. The invention of laser in 1960 was a turning point. The high degree of coherence of the laser radiation provides high spatial concentration of optical power. With the availability of the femtosecond lasers it has become possible to get extremely high peak powers 2 1013 W/cmz). At such high fields, the relationship between electric ‘polarization P and the electric field strength E ceases to be linear and several nonlinear effects begin to occur. Nonlinear absorption, a branch of nonlinear optics, refers to the interaction between radiation and matter accompanied by absorption of more than one photon. Nonlinear absorption has acquired great importance after the invention of high power lasers. One of the objectives of the present work is to investigate the nonlinear absorption processes occurring in fullerene, selected organic solvents and laser dyes. Fullerenes and laser dyes were chosen because of their highly nonlinear behaviour. Fullerenes, the most beautiful among molecules, offer fascinating field of research owinglto their significant structural properties. As toluene, benzene and carbon disulphide are themost widely used solvents for fullerenes, it seems important to study the nonlinear properties of these liquids as well. Like fullerenes, laser dyes also possess highly delocalized 7r electrons which are responsible for their nonlinear absorption. Dye lasers were the fulfillment of an experimenter’s pipe dream - to have a laser that is easily tunable over a wide range of wavelengths. A better understandingof the photophysical properties of laser dyes can significantly enhance the development and technology of dye lasers. We studied the nonlinear absorption properties of two rhodamine dyes to have some insight into their nonlinear optical properties.
Resumo:
Developments in laser technology over the past few years have made it possible to do experiments with focused intensities of IO"-102' Wcm'z. Short-pulse high-intensity lasers are able to accelerate protons and heavier ions to multi-MeV energies during their interaction with solid targets, gas jets and clusters. When such a laser radiation is focused at the intensity above 10” Wcm'2, local electric field strength will be almost equivalent to that within an atom. Hence, new nonlinear optical phenomena will be expected in the field of light matter interaction. Most of the research in the material interaction using high power lasers, especially related to plasma interaction, has been directed to the short pulse x-ray generation- Nanosecond laser interactions with solid targets also generate plasmas which emit radiation mainly in the optical region, the understanding of which is far from satisfactory. This thesis deals with a detailed study of some of the dynamical processes in plasmas generated by nanosecond and femtosecond lasers
Resumo:
The effect of lasers of three wavelengths in the visible region - 476, 488 and 514 nm on mitotic and meiotic cell divisions, growth, yield and activity of specific enzymes were studied in two taxonomically diverse plant species — A/lium cepa L. and Vicia faba. The effect of laser exposures was compared with the effect of two physical mutagens (Gamma and Ultraviolet radiations) and two chemical mutagens (Ethyl Methane Sulphonate and Hydroxyl amine). The study indicated that lasers could be mutagenic causing aberration in the mitotic and meiotic cell divisions while also producing changes in the growth and yield of the plants. Lasers of higher wavelengths 488 and 514 nm caused aberrations in the early stages of mitotic cell division whereas lasers of lower wavelengths (476 nm) caused more aberrations in the later stages of mitotic cell division. Laser exposure of 488 nm wavelength at power density 400 mW induced higher mitotic and meiotic aberrations and also induced higher pollen sterility than lasers of 476 and 514 nm. The frequency of mitotic aberrations induced by lasers was lesser than that caused by y-irradiation but comparable to that induced by EMS and HA. Lasers cause mutations in higher frequencies than UV. Lasers had a stimulatory effect on growth and yield in both plant species. This stimulatory effect of lasers on germination could not however be correlated to the activity of amylase and protease, the key enzymes in seed gennination. Enzymes such as peroxidase and catalase, involved in scavenging of free oxygen radicals often produced by irradiation, did not show increased activity in laser irradiated samples. Further studies are required for elucidating the exact mechanisms by which lasers cause mutations
Resumo:
Many nonlinear optical microscopy techniques based on the high-intensity nonlinear phenomena were developed recent years. A new technique based on the minimal-invasive in-situ analysis of the specific bound elements in biological samples is described in the present work. The imaging-mode Laser-Induced Breakdown Spectroscopy (LIBS) is proposed as a combination of LIBS, femtosecond laser material processing and microscopy. The Calcium distribution in the peripheral cell wall of the sunflower seedling (Helianthus Annuus L.) stem is studied as a first application of the imaging-mode LIBS. At first, several nonlinear optical microscopy techniques are overviewed. The spatial resolution of the imaging-mode LIBS microscope is discussed basing on the Point-Spread Function (PSF) concept. The primary processes of the Laser-Induced Breakdown (LIB) are overviewed. We consider ionization, breakdown, plasma formation and ablation processes. Water with defined Calcium salt concentration is used as a model of the biological object in the preliminary experiments. The transient LIB spectra are measured and analysed for both nanosecond and femtosecond laser excitation. The experiment on the local Calcium concentration measurements in the peripheral cell wall of the sunflower seedling stem employing nanosecond LIBS shows, that nanosecond laser is not a suitable excitation source for the biological applications. In case of the nanosecond laser the ablation craters have random shape and depth over 20 µm. The analysis of the femtosecond laser ablation craters shows the reproducible circle form. At 3.5 µJ laser pulse energy the diameter of the crater is 4 µm and depth 140 nm for single laser pulse, which results in 1 femtoliter analytical volume. The experimental result of the 2 dimensional and surface sectioning of the bound Calcium concentrations is presented in the work.
Resumo:
This work deals with the optical properties of supported noble metal nanoparticles, which are dominated by the so-called Mie resonance and are strongly dependent on the particles’ morphology. For this reason, characterization and control of the dimension of these systems are desired in order to optimize their applications. Gold and silver nanoparticles have been produced on dielectric supports like quartz glass, sapphire and rutile, by the technique of vapor deposition under ultra-high vacuum conditions. During the preparation, coalescence is observed as an important mechanism of cluster growth. The particles have been studied in situ by optical transmission spectroscopy and ex situ by atomic force microscopy. It is shown that the morphology of the aggregates can be regarded as oblate spheroids. A theoretical treatment of their optical properties, based on the quasistatic approximation, and its combination with results obtained by atomic force microscopy give a detailed characterization of the nanoparticles. This method has been compared with transmission electron microscopy and the results are in excellent agreement. Tailoring of the clusters’ dimensions by irradiation with nanosecond-pulsed laser light has been investigated. Selected particles are heated within the ensemble by excitation of the Mie resonance under irradiation with a tunable laser source. Laser-induced coalescence prevents strongly tailoring of the particle size. Nevertheless, control of the particle shape is possible. Laser-tailored ensembles have been tested as substrates for surface-enhanced Raman spectroscopy (SERS), leading to an improvement of the results. Moreover, they constitute reproducible, robust and tunable SERS-substrates with a high potential for specific applications, in the present case focused on environmental protection. Thereby, these SERS-substrates are ideally suited for routine measurements.
Resumo:
A new type of many-electron radiative transitions involving three electrons is predicted. The results of their investigation by many-body perturbation theory are presented. New spectral lines observed in the wavelength range of 37.5 to 54.0 nm by means of photon-induced fluorescence spectroscopy (PIFS) following the excitation of the Kr I 3d{^-1}np resonances are reported and compared with the predictions.
Resumo:
We present the first observation of optical transitions between doubly excited doublet states in the term systems N V, 0 VI and F VII. The spectra were produced by foil excitation of fast ion beams. The assignment of the spectral lines was made by comparison with the results of MCDP calculations along the isoelectronic sequence. The same method also led to the identification of two 3d - 4f quartet transitions in Mg X.
Resumo:
Energies of muonic X-rays of the K-series of carbon, nitrogen and oxygen have been measured with an accuracy of about 15 eV. Root mean square radii of the nuclear charge distributions were deduced. The results 2.49±0.05 fm for carbon, 2.55 ±0.03 fm for nitrogen and 2.71 ±0.02 fm for oxygen are in good agreement at comparable accuracy with recent electron scattering data.
Resumo:
Energy spectra of electrons ejected from collisions between a carbon foil and Ne projectiles with energies between 1.4 and 20 MeV have been measured. Continuous and discrete electron energy distributions are observed. Auger transitions of foil-excited Ne have been studied. Using relativistic Dirac-Fock multiconfiguration calculations, most of the measured Auger transitions have been identified.
Resumo:
The hyperfine structure and isotope shift of ^{221- 226}Ra and ^{212, 214}Ra have been measured in the ionic (Ra 11) transition 7s^2 S_{1/2} - 7p ^2 P_{3/2} (\lamda = 381.4 nm). The method of on-line collinear fast-beam laser spectroscopy has been applied using frequency-doubling of cw dye laser radiation in an external ring cavity. The magnetic hyperfine fields are compared with semi-empirical and ab initio calculations. The analysis of the quadrupole splitting by the same method yields the following, improved values of spectroscopic quadrupole moments: Q_s(^221 Ra)= 1.978(7)b, Q_s (^223 Ra)= 1.254(3)b and the reanalyzed values Q_s(^209 Ra) = 0.40(2)b, Q_s(^211 Ra) = 0.48(2)b, Q_s(^227 Ra)= 1.58(3)b, Q_s (^229 Ra) = 3.09(4)b with an additional scaling uncertainty of ±5%. Furthermore, the J-dependence of the isotope shift is analyzed in both Ra II transitions connecting the 7s^2 S_{1/2} ground state with the first excited doublet 7p^ P_{1/2} and 7p^ P_{3/2}.
Resumo:
Electronic factors in the volume isotope shift have been calculated in an ab initio way with the relativistic Dirac-Fock method for a number of different optical single/and two-photon transitions in Au I. The agreement with a semi-empirical method is within 10% for the resonance transition. For this one and a few other transitions the effect of core excitation has been analyzed with the Multi-configuration Dirac-Fock method as well, and it was found to reduce the electronic factor in the order of 5 %.
Resumo:
Measurements of the Auger decay of beam-foil excited Be II and Be I levels are reported along with a proposed assignment of the experimental spectra. The Li I, Be II and Be III (1s 2s^2) ^2 S \rightarrow (1s^2 2s)^2 S Auger transitions as presented in this letter represents the first observation of such states in positive ions with Z \le 5.