847 resultados para Large Scale Virtual Environments
Resumo:
Performance and economic indicators of a large scale fish farm that produces round fish, located in Mato Grosso State, Brazil, were evaluated. The 130.8 ha-water surface area was distributed in 30 ponds. Average total production costs and the following economic indicators were calculated: gross income (GI), gross margin (GM), gross margin index (GMI), profitability index (PI) and profit (P) for the farm as a whole and for ten ponds individually. Production performance indicators were also obtained, such as: production cycle (PC), apparent feed conversion (FC), average biomass storage (ABS), survival index (SI) and final average weight (FAW). The average costs to produce an average 2.971 kg.ha-1 per year were: R$ 2.43, R$ 0.72 and R$ 3.15 as average variable, fixed and total costs, respectively. Gross margin and profit per year per hectare of water surface were R$ 2,316.91 and R$ 180.98, respectively. The individual evaluation of the ponds showed that the best pond performance was obtained for PI 38%, FC 1.7, ABS 0.980 kg.m-2, TS 56%, FAW 1.873 kg with PC of 12.3 months. The worst PI was obtained for the pond that displayed losses of 138%, FC 2.6, ABS 0.110 kg.m-2, SI 16% and FAW 1.811 kg. However, large scale production of round-fish in farms is economically feasible. The studied farm displays favorable conditions to improve performance and economic indicators, but it is necessary to reproduce the breeding techniques and performance indicators achieved in few ponds to the entire farm.
Resumo:
To tackle the challenges at circuit level and system level VLSI and embedded system design, this dissertation proposes various novel algorithms to explore the efficient solutions. At the circuit level, a new reliability-driven minimum cost Steiner routing and layer assignment scheme is proposed, and the first transceiver insertion algorithmic framework for the optical interconnect is proposed. At the system level, a reliability-driven task scheduling scheme for multiprocessor real-time embedded systems, which optimizes system energy consumption under stochastic fault occurrences, is proposed. The embedded system design is also widely used in the smart home area for improving health, wellbeing and quality of life. The proposed scheduling scheme for multiprocessor embedded systems is hence extended to handle the energy consumption scheduling issues for smart homes. The extended scheme can arrange the household appliances for operation to minimize monetary expense of a customer based on the time-varying pricing model.
Resumo:
This study presents a computational parametric analysis of DME steam reforming in a large scale Circulating Fluidized Bed (CFB) reactor. The Computational Fluid Dynamic (CFD) model used, which is based on Eulerian-Eulerian dispersed flow, has been developed and validated in Part I of this study [1]. The effect of the reactor inlet configuration, gas residence time, inlet temperature and steam to DME ratio on the overall reactor performance and products have all been investigated. The results have shown that the use of double sided solid feeding system remarkable improvement in the flow uniformity, but with limited effect on the reactions and products. The temperature has been found to play a dominant role in increasing the DME conversion and the hydrogen yield. According to the parametric analysis, it is recommended to run the CFB reactor at around 300 °C inlet temperature, 5.5 steam to DME molar ratio, 4 s gas residence time and 37,104 ml gcat -1 h-1 space velocity. At these conditions, the DME conversion and hydrogen molar concentration in the product gas were both found to be around 80%.
Resumo:
Some color centers in diamond can serve as quantum bits which can be manipulated with microwave pulses and read out with laser, even at room temperature. However, the photon collection efficiency of bulk diamond is greatly reduced by refraction at the diamond/air interface. To address this issue, we fabricated arrays of diamond nanostructures, differing in both diameter and top end shape, with HSQ and Cr as the etching mask materials, aiming toward large scale fabrication of single-photon sources with enhanced collection efficiency made of nitrogen vacancy (NV) embedded diamond. With a mixture of O2 and CHF3 gas plasma, diamond pillars with diameters down to 45 nm were obtained. The top end shape evolution has been represented with a simple model. The tests of size dependent single-photon properties confirmed an improved single-photon collection efficiency enhancement, larger than tenfold, and a mild decrease of decoherence time with decreasing pillar diameter was observed as expected. These results provide useful information for future applications of nanostructured diamond as a single-photon source.
Resumo:
Thesis (Master, Education) -- Queen's University, 2016-08-29 15:56:53.748
Resumo:
Strong convective events can produce extreme precipitation, hail, lightning or gusts, potentially inducing severe socio-economic impacts. These events have a relatively small spatial extension and, in most cases, a short lifetime. In this study, a model is developed for estimating convective extreme events based on large scale conditions. It is shown that strong convective events can be characterized by a Weibull distribution of radar-based rainfall with a low shape and high scale parameter value. A radius of 90km around a station reporting a convective situation turned out to be suitable. A methodology is developed to estimate the Weibull parameters and thus the occurrence probability of convective events from large scale atmospheric instability and enhanced near-surface humidity, which are usually found on a larger scale than the convective event itself. Here, the probability for the occurrence of extreme convective events is estimated from the KO-index indicating the stability, and relative humidity at 1000hPa. Both variables are computed from ERA-Interim reanalysis. In a first version of the methodology, these two variables are applied to estimate the spatial rainfall distribution and to estimate the occurrence of a convective event. The developed method shows significant skill in estimating the occurrence of convective events as observed at synoptic stations, lightning measurements, and severe weather reports. In order to take frontal influences into account, a scheme for the detection of atmospheric fronts is implemented. While generally higher instability is found in the vicinity of fronts, the skill of this approach is largely unchanged. Additional improvements were achieved by a bias-correction and the use of ERA-Interim precipitation. The resulting estimation method is applied to the ERA-Interim period (1979-2014) to establish a ranking of estimated convective extreme events. Two strong estimated events that reveal a frontal influence are analysed in detail. As a second application, the method is applied to GCM-based decadal predictions in the period 1979-2014, which were initialized every year. It is shown that decadal predictive skill for convective event frequencies over Germany is found for the first 3-4 years after the initialization.
Resumo:
Aim Positive regional correlations between biodiversity and human population have been detected for several taxonomic groups and geographical regions. Such correlations could have important conservation implications and have been mainly attributed to ecological factors, with little testing for an artefactual explanation: more populated regions may show higher biodiversity because they are more thoroughly surveyed. We tested the hypothesis that the correlation between people and herptile diversity in Europe is influenced by survey effort
Resumo:
The increasing integration of renewable energies in the electricity grid contributes considerably to achieve the European Union goals on energy and Greenhouse Gases (GHG) emissions reduction. However, it also brings problems to grid management. Large scale energy storage can provide the means for a better integration of the renewable energy sources, for balancing supply and demand, to increase energy security, to enhance a better management of the grid and also to converge towards a low carbon economy. Geological formations have the potential to store large volumes of fluids with minimal impact to environment and society. One of the ways to ensure a large scale energy storage is to use the storage capacity in geological reservoir. In fact, there are several viable technologies for underground energy storage, as well as several types of underground reservoirs that can be considered. The geological energy storage technologies considered in this research were: Underground Gas Storage (UGS), Hydrogen Storage (HS), Compressed Air Energy Storage (CAES), Underground Pumped Hydro Storage (UPHS) and Thermal Energy Storage (TES). For these different types of underground energy storage technologies there are several types of geological reservoirs that can be suitable, namely: depleted hydrocarbon reservoirs, aquifers, salt formations and caverns, engineered rock caverns and abandoned mines. Specific site screening criteria are applicable to each of these reservoir types and technologies, which determines the viability of the reservoir itself, and of the technology for any particular site. This paper presents a review of the criteria applied in the scope of the Portuguese contribution to the EU funded project ESTMAP – Energy Storage Mapping and Planning.
Resumo:
Over the last decade, the most widespread approaches for traditional management were based on the Simple Network Management Protocol (SNMP) or Common Management Information Protocol (CMIP). However, they both have several problems in terms of scalability, due to their centralization characteristics. Although the distributed management approaches exhibit better performance in terms of scalability, they still underperform regarding communication costs, autonomy, extensibility, exibility, robustness, and cooperation between network nodes. The cooperation between network nodes normally requires excessive overheads for synchronization and dissemination of management information in the network. For emerging dynamic and large-scale networking environments, as envisioned in Next Generation Networks (NGNs), exponential growth in the number of network devices and mobile communications and application demands is expected. Thus, a high degree of management automation is an important requirement, along with new mechanisms that promote it optimally and e ciently, taking into account the need for high cooperation between the nodes. Current approaches for self and autonomic management allow the network administrator to manage large areas, performing fast reaction and e ciently facing unexpected problems. The management functionalities should be delegated to a self-organized plane operating within the network, that decrease the network complexity and the control information ow, as opposed to centralized or external servers. This Thesis aims to propose and develop a communication framework for distributed network management which integrates a set of mechanisms for initial communication, exchange of management information, network (re) organization and data dissemination, attempting to meet the autonomic and distributed management requirements posed by NGNs. The mechanisms are lightweight and portable, and they can operate in di erent hardware architectures and include all the requirements to maintain the basis for an e cient communication between nodes in order to ensure autonomic network management. Moreover, those mechanisms were explored in diverse network conditions and events, such as device and link errors, di erent tra c/network loads and requirements. The results obtained through simulation and real experimentation show that the proposed mechanisms provide a lower convergence time, smaller overhead impact in the network, faster dissemination of management information, increase stability and quality of the nodes associations, and enable the support for e cient data information delivery in comparison to the base mechanisms analyzed. Finally, all mechanisms for communication between nodes proposed in this Thesis, that support and distribute the management information and network control functionalities, were devised and developed to operate in completely decentralized scenarios.
Resumo:
El principal objetivo de este trabajo es proporcionar una solución en tiempo real basada en visión estéreo o monocular precisa y robusta para que un vehículo aéreo no tripulado (UAV) sea autónomo en varios tipos de aplicaciones UAV, especialmente en entornos abarrotados sin señal GPS. Este trabajo principalmente consiste en tres temas de investigación de UAV basados en técnicas de visión por computador: (I) visual tracking, proporciona soluciones efectivas para localizar visualmente objetos de interés estáticos o en movimiento durante el tiempo que dura el vuelo del UAV mediante una aproximación adaptativa online y una estrategia de múltiple resolución, de este modo superamos los problemas generados por las diferentes situaciones desafiantes, tales como cambios significativos de aspecto, iluminación del entorno variante, fondo del tracking embarullado, oclusión parcial o total de objetos, variaciones rápidas de posición y vibraciones mecánicas a bordo. La solución ha sido utilizada en aterrizajes autónomos, inspección de plataformas mar adentro o tracking de aviones en pleno vuelo para su detección y evasión; (II) odometría visual: proporciona una solución eficiente al UAV para estimar la posición con 6 grados de libertad (6D) usando únicamente la entrada de una cámara estéreo a bordo del UAV. Un método Semi-Global Blocking Matching (SGBM) eficiente basado en una estrategia grueso-a-fino ha sido implementada para una rápida y profunda estimación del plano. Además, la solución toma provecho eficazmente de la información 2D y 3D para estimar la posición 6D, resolviendo de esta manera la limitación de un punto de referencia fijo en la cámara estéreo. Una robusta aproximación volumétrica de mapping basada en el framework Octomap ha sido utilizada para reconstruir entornos cerrados y al aire libre bastante abarrotados en 3D con memoria y errores correlacionados espacialmente o temporalmente; (III) visual control, ofrece soluciones de control prácticas para la navegación de un UAV usando Fuzzy Logic Controller (FLC) con la estimación visual. Y el framework de Cross-Entropy Optimization (CEO) ha sido usado para optimizar el factor de escala y la función de pertenencia en FLC. Todas las soluciones basadas en visión en este trabajo han sido probadas en test reales. Y los conjuntos de datos de imágenes reales grabados en estos test o disponibles para la comunidad pública han sido utilizados para evaluar el rendimiento de estas soluciones basadas en visión con ground truth. Además, las soluciones de visión presentadas han sido comparadas con algoritmos de visión del estado del arte. Los test reales y los resultados de evaluación muestran que las soluciones basadas en visión proporcionadas han obtenido rendimientos en tiempo real precisos y robustos, o han alcanzado un mejor rendimiento que aquellos algoritmos del estado del arte. La estimación basada en visión ha ganado un rol muy importante en controlar un UAV típico para alcanzar autonomía en aplicaciones UAV. ABSTRACT The main objective of this dissertation is providing real-time accurate robust monocular or stereo vision-based solution for Unmanned Aerial Vehicle (UAV) to achieve the autonomy in various types of UAV applications, especially in GPS-denied dynamic cluttered environments. This dissertation mainly consists of three UAV research topics based on computer vision technique: (I) visual tracking, it supplys effective solutions to visually locate interesting static or moving object over time during UAV flight with on-line adaptivity approach and multiple-resolution strategy, thereby overcoming the problems generated by the different challenging situations, such as significant appearance change, variant surrounding illumination, cluttered tracking background, partial or full object occlusion, rapid pose variation and onboard mechanical vibration. The solutions have been utilized in autonomous landing, offshore floating platform inspection and midair aircraft tracking for sense-and-avoid; (II) visual odometry: it provides the efficient solution for UAV to estimate the 6 Degree-of-freedom (6D) pose using only the input of stereo camera onboard UAV. An efficient Semi-Global Blocking Matching (SGBM) method based on a coarse-to-fine strategy has been implemented for fast depth map estimation. In addition, the solution effectively takes advantage of both 2D and 3D information to estimate the 6D pose, thereby solving the limitation of a fixed small baseline in the stereo camera. A robust volumetric occupancy mapping approach based on the Octomap framework has been utilized to reconstruct indoor and outdoor large-scale cluttered environments in 3D with less temporally or spatially correlated measurement errors and memory; (III) visual control, it offers practical control solutions to navigate UAV using Fuzzy Logic Controller (FLC) with the visual estimation. And the Cross-Entropy Optimization (CEO) framework has been used to optimize the scaling factor and the membership function in FLC. All the vision-based solutions in this dissertation have been tested in real tests. And the real image datasets recorded from these tests or available from public community have been utilized to evaluate the performance of these vision-based solutions with ground truth. Additionally, the presented vision solutions have compared with the state-of-art visual algorithms. Real tests and evaluation results show that the provided vision-based solutions have obtained real-time accurate robust performances, or gained better performance than those state-of-art visual algorithms. The vision-based estimation has played a critically important role for controlling a typical UAV to achieve autonomy in the UAV application.
Resumo:
The increasingly widespread use of large-scale 3D virtual environments has translated into an increasing effort required from designers, developers and testers. While considerable research has been conducted into assisting the design of virtual world content and mechanics, to date, only limited contributions have been made regarding the automatic testing of the underpinning graphics software and hardware. In the work presented in this paper, two novel neural network-based approaches are presented to predict the correct visualization of 3D content. Multilayer perceptrons and self-organizing maps are trained to learn the normal geometric and color appearance of objects from validated frames and then used to detect novel or anomalous renderings in new images. Our approach is general, for the appearance of the object is learned rather than explicitly represented. Experiments were conducted on a game engine to determine the applicability and effectiveness of our algorithms. The results show that the neural network technology can be effectively used to address the problem of automatic and reliable visual testing of 3D virtual environments.
Resumo:
This paper presents an enhanced algorithm for matching laser scan maps using histogram correlations. The histogram representation effectively summarizes a map's salient features such that pairs of maps can be matched efficiently without any prior guess as to their alignment. The histogram matching algorithm has been enhanced in order to work well in outdoor unstructured environments by using entropy metrics, weighted histograms and proper thresholding of quality metrics. Thus our large-scale scan-matching SLAM implementation has a vastly improved ability to close large loops in real-time even when odometry is not available. Our experimental results have demonstrated a successful mapping of the largest area ever mapped to date using only a single laser scanner. We also demonstrate our ability to solve the lost robot problem by localizing a robot to a previously built map without any prior initialization.
Resumo:
Three-dimensional models which contain both geometry and texture have numerous applications such as urban planning, physical simulation, and virtual environments. A major focus of computer vision (and recently graphics) research is the automatic recovery of three-dimensional models from two-dimensional images. After many years of research this goal is yet to be achieved. Most practical modeling systems require substantial human input and unlike automatic systems are not scalable. This thesis presents a novel method for automatically recovering dense surface patches using large sets (1000's) of calibrated images taken from arbitrary positions within the scene. Physical instruments, such as Global Positioning System (GPS), inertial sensors, and inclinometers, are used to estimate the position and orientation of each image. Essentially, the problem is to find corresponding points in each of the images. Once a correspondence has been established, calculating its three-dimensional position is simply a matter of geometry. Long baseline images improve the accuracy. Short baseline images and the large number of images greatly simplifies the correspondence problem. The initial stage of the algorithm is completely local and scales linearly with the number of images. Subsequent stages are global in nature, exploit geometric constraints, and scale quadratically with the complexity of the underlying scene. We describe techniques for: 1) detecting and localizing surface patches; 2) refining camera calibration estimates and rejecting false positive surfels; and 3) grouping surface patches into surfaces and growing the surface along a two-dimensional manifold. We also discuss a method for producing high quality, textured three-dimensional models from these surfaces. Some of the most important characteristics of this approach are that it: 1) uses and refines noisy calibration estimates; 2) compensates for large variations in illumination; 3) tolerates significant soft occlusion (e.g. tree branches); and 4) associates, at a fundamental level, an estimated normal (i.e. no frontal-planar assumption) and texture with each surface patch.
Resumo:
This study investigates the use of computer modelled versus directly experimentally determined fire hazard data for assessing survivability within buildings using evacuation models incorporating Fractionally Effective Dose (FED) models. The objective is to establish a link between effluent toxicity, measured using a variety of small and large scale tests, and building evacuation. For the scenarios under consideration, fire simulation is typically used to determine the time non-survivable conditions develop within the enclosure, for example, when smoke or toxic effluent falls below a critical height which is deemed detrimental to evacuation or when the radiative fluxes reach a critical value leading to the onset of flashover. The evacuation calculation would the be used to determine whether people within the structure could evacuate before these critical conditions develop.
Resumo:
Knowmore (House of Commons) is a large scale generative interactive installation that incorporates embodied interaction, dynamic image creation, new furniture forms, touch sensitivity, innovative collaborative processes and multichannel generative sound creation. A large circular table spun by hand and a computer-controlled video projection falls on its top, creating an uncanny blend of physical object and virtual media. Participants’ presence around the table and how they touch it is registered, allowing up to five people to collaboratively ‘play’ this deeply immersive audiovisual work. Set within an ecological context, the work subtly asks what kind of resources and knowledges might be necessary to move us past simply knowing what needs to be changed to instead actually embodying that change, whilst hinting at other deeply relational ways of understanding and knowing the world. The work has successfully operated in two high traffic public environments, generating a subtle form of interactivity that allows different people to interact at different paces and speeds and with differing intentions, each contributing towards dramatic public outcomes. The research field involved developing new interaction and engagement strategies for eco-political media arts practice. The context was the creation of improved embodied, performative and improvisational experiences for participants; further informed by ‘Sustainment’ theory. The central question was, what ontological shifts may be necessary to better envision and align our everyday life choices in ways that respect that which is shared by all - 'The Commons'. The methodology was primarily practice-led and in concert with underlying theories. The work’s knowledge contribution was to question how new media interactive experience and embodied interaction might prompt participants to reflect upon the kind of resources and knowledges required to move past simply knowing what needs to be changed to instead actually embodying that change. This was achieved through focusing on the power of embodied learning implied by the works' strongly physical interface (i.e. the spinning of a full size table) in concert with the complex field of layered imagery and sound. The work was commissioned by the State Library of Queensland and Queensland Artworkers Alliance and significantly funded by The Australia Council for the Arts, Arts Queensland, QUT, RMIT Centre for Animation and Interactive Media and industry partners E2E Visuals. After premiering for 3 months at the State Library of Queensland it was curated into the significant ‘Mediations Biennial of Modern Art’ in Poznan, Poland. The work formed the basis of two papers, was reviewed in Realtime (90), was overviewed at Subtle Technologies (2010) in Toronto and shortlisted for ISEA 2011 Istanbul and included in the edited book/catalogue ‘Art in Spite of Economics’, a collaboration between Leonardo/ISAST (MIT Press); Goldsmiths, University of London; ISEA International; and Sabanci University, Istanbul.