973 resultados para LOW LEVEL LASER THERAPY
Resumo:
Optimal behavior relies on flexible adaptation to environmental requirements, notably based on the detection of errors. The impact of error detection on subsequent behavior typically manifests as a slowing down of RTs following errors. Precisely how errors impact the processing of subsequent stimuli and in turn shape behavior remains unresolved. To address these questions, we used an auditory spatial go/no-go task where continual feedback informed participants of whether they were too slow. We contrasted auditory-evoked potentials to left-lateralized go and right no-go stimuli as a function of performance on the preceding go stimuli, generating a 2 × 2 design with "preceding performance" (fast hit [FH], slow hit [SH]) and stimulus type (go, no-go) as within-subject factors. SH trials yielded SH trials on the following trials more often than did FHs, supporting our assumption that SHs engaged effects similar to errors. Electrophysiologically, auditory-evoked potentials modulated topographically as a function of preceding performance 80-110 msec poststimulus onset and then as a function of stimulus type at 110-140 msec, indicative of changes in the underlying brain networks. Source estimations revealed a stronger activity of prefrontal regions to stimuli after successful than error trials, followed by a stronger response of parietal areas to the no-go than go stimuli. We interpret these results in terms of a shift from a fast automatic to a slow controlled form of inhibitory control induced by the detection of errors, manifesting during low-level integration of task-relevant features of subsequent stimuli, which in turn influences response speed.
Resumo:
Bacterial factors may contribute to the global emergence and spread of drug-resistant tuberculosis (TB). Only a few studies have reported on the interactions between different bacterial factors. We studied drug-resistant Mycobacterium tuberculosis isolates from a nationwide study conducted from 2000 to 2008 in Switzerland. We determined quantitative drug resistance levels of first-line drugs by using Bactec MGIT-960 and drug resistance genotypes by sequencing the hot-spot regions of the relevant genes. We determined recent transmission by molecular methods and collected clinical data. Overall, we analyzed 158 isolates that were resistant to isoniazid, rifampin, or ethambutol, 48 (30.4%) of which were multidrug resistant. Among 154 isoniazid-resistant strains, katG mutations were associated with high-level and inhA promoter mutations with low-level drug resistance. Only katG(S315T) (65.6% of all isoniazid-resistant strains) and inhA promoter -15C/T (22.7%) were found in molecular clusters. M. tuberculosis lineage 2 (includes Beijing genotype) was associated with any drug resistance (adjusted odds ratio [OR], 3.0; 95% confidence interval [CI], 1.7 to 5.6; P < 0.0001). Lineage 1 was associated with inhA promoter -15C/T mutations (OR, 6.4; 95% CI, 2.0 to 20.7; P = 0.002). We found that the genetic strain background influences the level of isoniazid resistance conveyed by particular mutations (interaction tests of drug resistance mutations across all lineages; P < 0.0001). In conclusion, M. tuberculosis drug resistance mutations were associated with various levels of drug resistance and transmission, and M. tuberculosis lineages were associated with particular drug resistance-conferring mutations and phenotypic drug resistance. Our study also supports a role for epistatic interactions between different drug resistance mutations and strain genetic backgrounds in M. tuberculosis drug resistance.
Resumo:
Clin Microbiol Infect ABSTRACT: The aetiological diagnosis of community-acquired pneumonia (CAP) is challenging in children, and serological markers would be useful surrogates for epidemiological studies of pneumococcal CAP. We compared the use of anti-pneumolysin (Ply) antibody alone or with four additional pneumococcal surface proteins (PSPs) (pneumococcal histidine triad D (PhtD), pneumococcal histidine triad E (PhtE), LytB, and pneumococcal choline-binding protein A (PcpA)) as serological probes in children hospitalized with CAP. Recent pneumococcal exposure (positive blood culture for Streptococcus pneumoniae, Ply(+) blood PCR finding, and PSP seroresponse) was predefined as supporting the diagnosis of presumed pneumococcal CAP (P-CAP). Twenty-three of 75 (31%) children with CAP (mean age 33.7 months) had a Ply(+) PCR finding and/or a ≥2-fold increase of antibodies. Adding seroresponses to four PSPs identified 12 additional patients (35/75, 45%), increasing the sensitivity of the diagnosis of P-CAP from 0.44 (Ply alone) to 0.94. Convalescent anti-Ply and anti-PhtD antibody titres were significantly higher in P-CAP than in non P-CAP patients (446 vs. 169 ELISA Units (EU)/mL, p 0.031, and 189 vs. 66 EU/mL, p 0.044), confirming recent exposure. Acute anti-PcpA titres were three-fold lower (71 vs. 286 EU/mL, p <0.001) in P-CAP children. Regression analyses confirmed a low level of acute PcpA antibodies as the only independent predictor (p 0.002) of P-CAP. Novel PSPs facilitate the demonstration of recent pneumococcal exposure in CAP children. Low anti-PcpA antibody titres at admission distinguished children with P-CAP from those with CAP with a non-pneumococcal origin.
Resumo:
We carry out a self-consistent analytical theory of unipolar current and noise properties of metal-semiconductor-metal structures made of highly resistive semiconductors in the presence of an applied bias of arbitrary strength. By including the effects of the diffusion current we succeed in studying the whole range of carrier injection conditions going from low level injection, where the structure behaves as a linear resistor, to high level injection, where the structure behaves as a space charge limited diode. We show that these structures display shot noise at the highest voltages. Remarkably the crossover from Nyquist noise to shot noise exhibits a complicated behavior with increasing current where an initial square root dependence (double thermal noise) is followed by a cubic power law.
Resumo:
During 2008, we selected 8 studies of interest. It seems important to continue to treat high tension for old patients. To give a good medication against pain, to maintain activity and to reassure patient is the treatment for acute back pain; surgery for spinal stenosis has better results than other treatments at two years of evolution. Pregabalin seems to provide clinically benefit to patients with fibromyalgia. Helicobacter pylori test and treat has the same results than proton pomp inhibitor in initial management of dyspepsia; extending triple therapy beyond 7 days is unlikely to be a clinical useful strategy. Syphilis testing algorithms using treponemal tests for initial screening could be inversed. Finally, selective reporting of clinical trials results for antidepressant are relatively frequent.
Resumo:
Summary. Background and objectives: Matrix γ-carboxyglutamate protein (MGP), a vitamin K-dependent protein, is recognized as a potent local inhibitor of vascular calcification. Studying patients with Keutel syndrome (KS), a rare autosomal recessive disorder resulting from MGP mutations, provides an opportunity to investigate the functions of MGP. The purpose of this study was (i) to investigate the phenotype and the underlying MGP mutation of a newly identified KS patient, and (ii) to investigate MGP species and the effect of vitamin K supplements in KS patients. Methods: The phenotype of a newly identified KS patient was characterized with specific attention to signs of vascular calcification. Genetic analysis of the MGP gene was performed. Circulating MGP species were quantified and the effect of vitamin K supplements on MGP carboxylation was studied. Finally, we performed immunohistochemical staining of tissues of the first KS patient originally described focusing on MGP species. Results: We describe a novel homozygous MGP mutation (c.61+1G>A) in a newly identified KS patient. No signs of arterial calcification were found, in contrast to findings in MGP knockout mice. This patient is the first in whom circulating MGP species have been characterized, showing a high level of phosphorylated MGP and a low level of carboxylated MGP. Contrary to expectations, vitamin K supplements did not improve the circulating carboxylated MGP levels. Phosphorylated MGP was also found to be present in the first KS patient originally described. Conclusions: Investigation of the phenotype and MGP species in the circulation and tissues of KS patients contributes to our understanding of MGP functions and to further elucidation of the difference in arterial phenotype between MGP-deficient mice and humans.
Resumo:
Phototropin photoreceptors (phot1 and phot2 in Arabidopsis thaliana) enable responses to directional light cues (e.g., positive phototropism in the hypocotyl). In Arabidopsis, phot1 is essential for phototropism in response to low light, a response that is also modulated by phytochrome A (phyA), representing a classical example of photoreceptor coaction. The molecular mechanisms underlying promotion of phototropism by phyA remain unclear. Most phyA responses require nuclear accumulation of the photoreceptor, but interestingly, it has been proposed that cytosolic phyA promotes phototropism. By comparing the kinetics of phototropism in seedlings with different subcellular localizations of phyA, we show that nuclear phyA accelerates the phototropic response, whereas in the fhy1 fhl mutant, in which phyA remains in the cytosol, phototropic bending is slower than in the wild type. Consistent with this data, we find that transcription factors needed for full phyA responses are needed for normal phototropism. Moreover, we show that phyA is the primary photoreceptor promoting the expression of phototropism regulators in low light (e.g., PHYTOCHROME KINASE SUBSTRATE1 [PKS1] and ROOT PHOTO TROPISM2 [RPT2]). Although phyA remains cytosolic in fhy1 fhl, induction of PKS1 and RPT2 expression still occurs in fhy1 fhl, indicating that a low level of nuclear phyA signaling is still present in fhy1 fhl.
Resumo:
Vibration-based damage identification (VBDI) techniques have been developed in part to address the problems associated with an aging civil infrastructure. To assess the potential of VBDI as it applies to highway bridges in Iowa, three applications of VBDI techniques were considered in this study: numerical simulation, laboratory structures, and field structures. VBDI techniques were found to be highly capable of locating and quantifying damage in numerical simulations. These same techniques were found to be accurate in locating various types of damage in a laboratory setting with actual structures. Although there is the potential for these techniques to quantify damage in a laboratory setting, the ability of the methods to quantify low-level damage in the laboratory is not robust. When applying these techniques to an actual bridge, it was found that some traditional applications of VBDI methods are capable of describing the global behavior of the structure but are most likely not suited for the identification of typical damage scenarios found in civil infrastructure. Measurement noise, boundary conditions, complications due to substructures and multiple material types, and transducer sensitivity make it very difficult for present VBDI techniques to identify, much less quantify, highly localized damage (such as small cracks and minor changes in thickness). However, while investigating VBDI techniques in the field, it was found that if the frequency-domain response of the structure can be generated from operating traffic load, the structural response can be animated and used to develop a holistic view of the bridge’s response to various automobile loadings. By animating the response of a field bridge, concrete cracking (in the abutment and deck) was correlated with structural motion and problem frequencies (i.e., those that cause significant torsion or tension-compression at beam ends) were identified. Furthermore, a frequency-domain study of operational traffic was used to identify both common and extreme frequencies for a given structure and loading. Common traffic frequencies can be compared to problem frequencies so that cost-effective, preventative solutions (either structural or usage-based) can be developed for a wide range of IDOT bridges. Further work should (1) perfect the process of collecting high-quality operational frequency response data; (2) expand and simplify the process of correlating frequency response animations with damage; and (3) develop efficient, economical, preemptive solutions to common damage types.
Resumo:
This paper reports a series of experiments on patient JB, a man with memory difficulties following damage to the left frontal lobe. The primary characteristic of JB's recognition memory impairment is a high level of false recognition together with a normal hit rate. The hypothesis that JB's false recognition reflects an over-reliance on familiarity is considered, but discounted on the basis that the false alarm rate is not affected by increasing the similarity between distracters and targets, and remains high when nonword stimuli are used. It is suggested, instead, that JB relies on a poorly focused memory description, which lacks item-specific detail but contains more general, low-level properties of the target items-these properties being held by many distracter items as well. This deficit is considered to arise because of damage to frontally mediated control processes involved in the selection of elements for memory encoding. An encoding deficit is supported by the fact that JB's false recognition is significantly reduced by orienting instructions, and is eliminated when his remote memory is subjected to recognition testing. In contrast, it is shown that manipulations at the level of retrieval (e.g. restricting the number of "old" responses) have little effect on his false recognition.
Resumo:
OBJECTIVES: To assess the in vitro susceptibility of Actinobaculum schaalii to 12 antimicrobial agents as well as to dissect the genetic basis of fluoroquinolone resistance. METHODS: Forty-eight human clinical isolates of A. schaalii collected in Switzerland and France were studied. Each isolate was identified by 16S rRNA sequencing. MICs of amoxicillin, ceftriaxone, gentamicin, vancomycin, clindamycin, linezolid, ciprofloxacin, levofloxacin, moxifloxacin, co-trimoxazole, nitrofurantoin and metronidazole were determined using the Etest method. Interpretation of results was made according to EUCAST clinical breakpoints. The quinolone-resistance-determining regions (QRDRs) of gyrA and parC genes were also identified and sequence analysis was performed for all 48 strains. RESULTS: All isolates were susceptible to amoxicillin, ceftriaxone, gentamicin, clindamycin (except three), vancomycin, linezolid and nitrofurantoin, whereas 100% and 85% were resistant to ciprofloxacin/metronidazole and co-trimoxazole, respectively. Greater than or equal to 90% of isolates were susceptible to the other tested fluoroquinolones, and only one strain was highly resistant to levofloxacin (MIC ?32 mg/L) and moxifloxacin (MIC 8 mg/L). All isolates that were susceptible or low-level resistant to levofloxacin/moxifloxacin (n?=?47) showed identical GyrA and ParC amino acid QRDR sequences. In contrast, the isolate exhibiting high-level resistance to levofloxacin and moxifloxacin possessed a unique mutation in GyrA, Ala83Val (Escherichia coli numbering), whereas no mutation was present in ParC. CONCLUSIONS: When an infection caused by A. schaalii is suspected, there is a risk of clinical failure by treating with ciprofloxacin or co-trimoxazole, and ?-lactams should be preferred. In addition, acquired resistance to fluoroquinolones more active against Gram-positive bacteria is possible.
Resumo:
Approaching or looming sounds (L-sounds) have been shown to selectively increase visual cortex excitability [Romei, V., Murray, M. M., Cappe, C., & Thut, G. Preperceptual and stimulus-selective enhancement of low-level human visual cortex excitability by sounds. Current Biology, 19, 1799-1805, 2009]. These cross-modal effects start at an early, preperceptual stage of sound processing and persist with increasing sound duration. Here, we identified individual factors contributing to cross-modal effects on visual cortex excitability and studied the persistence of effects after sound offset. To this end, we probed the impact of different L-sound velocities on phosphene perception postsound as a function of individual auditory versus visual preference/dominance using single-pulse TMS over the occipital pole. We found that the boosting of phosphene perception by L-sounds continued for several tens of milliseconds after the end of the L-sound and was temporally sensitive to different L-sound profiles (velocities). In addition, we found that this depended on an individual's preferred sensory modality (auditory vs. visual) as determined through a divided attention task (attentional preference), but not on their simple threshold detection level per sensory modality. Whereas individuals with "visual preference" showed enhanced phosphene perception irrespective of L-sound velocity, those with "auditory preference" showed differential peaks in phosphene perception whose delays after sound-offset followed the different L-sound velocity profiles. These novel findings suggest that looming signals modulate visual cortex excitability beyond sound duration possibly to support prompt identification and reaction to potentially dangerous approaching objects. The observed interindividual differences favor the idea that unlike early effects this late L-sound impact on visual cortex excitability is influenced by cross-modal attentional mechanisms rather than low-level sensory processes.
Resumo:
A radiochemical procedure was developed for the sequential determination of Pu and Am radioisotopes in environmental samples. The radioisotope activities were then used to assess the origin and release date of the environmental plutonium. The radioanalytical procedure is based on the separation of Pu and Am on selective extraction chromatographic resins (Eichrom TEVA and DGA). Alpha sources were prepared by electrodeposition on stainless steel discs, and the alpha emitting radionuclides (238Pu, 239,240Pu and 241Am) were measured by alpha spectrometry. For the determination of the beta emitting 241Pu, the Pu alpha source was leached in hot concentrated nitric acid and the Pu fraction further purified by extraction chromatography on a small column of TEVA resin (100 μg of resin in a pipette tip). 241Pu is then measured by ultra low level liquid scintillation counting. Due to the lack of reference material for 241Pu, the proposed radiochemical method was nevertheless validated using four IAEA reference sediments with information values of 241Pu. The proposed method was then used to determine the 238Pu, 239,240Pu, 241Pu and 241Am activity concentrations in alpine soils of France and Switzerland. The soil is the primary receptor of the atmospheric radioactive fallout and, because of the strong binding interaction with soils particles, the isotopes are little fractionated. Therefore, the activity ratios 241Pu/239+240Pu and 238Pu/239,240Pu in soil samples were used to determine the origin (source) and date of the Pu contamination in the investigated alpine sites. The 241Pu/239,240Pu and 238Pu/239,240Pu activity ratios confirmed that the main origin of Pu in the alpine soils was the global fallout from the nuclear bomb tests (NBT) in the fifties and sixties. Furthermore, the 241Pu/241Am activity ratios were used to determine the age of the Pu contamination, which is also an important data for distinguishing the Pu sources. The estimation of the date of the contamination, by the 241Pu/241Am age-dating method, further confirmed the NBT as the Pu source. However, the 241Pu/241Am dating method was limited to samples where Pu-Am fractionation was insignificant. If any, the contribution of the Chernobyl accident in the studied sites is negligible.
Resumo:
Objectives: To develop European League Against Rheumatism (EULAR) recommendations for the management of large vessel vasculitis. Methods: An expert group (10 rheumatologists, 3 nephrologists, 2 immunolgists, 2 internists representing 8 European countries and the USA, a clinical epidemiologist and a representative from a drug regulatory agency) identified 10 topics for a systematic literature search through a modified Delphi technique. In accordance with standardised EULAR operating procedures, recommendations were derived for the management of large vessel vasculitis. In the absence of evidence, recommendations were formulated on the basis of a consensus opinion. Results: Seven recommendations were made relating to the assessment, investigation and treatment of patients with large vessel vasculitis. The strength of recommendations was restricted by the low level of evidence and EULAR standardised operating procedures. Conclusions: On the basis of evidence and expert consensus, management recommendations for large vessel vasculitis have been formulated and are commended for use in everyday clinical practice.
Resumo:
BACKGROUND: (S)-Methadone, metabolized mainly by CYP2B6, shows a wide interindividual variability in its pharmacokinetics and pharmacodynamics. METHODS: Resequencing of the CYP2B6 gene was performed in 12 and 35 selected individuals with high (S)-methadone plasma exposure and low (S)-methadone plasma exposure, respectively, from a previously described cohort of 276 patients undergoing methadone maintenance treatment. Selected genetic polymorphisms were then analyzed in the complete cohort. RESULTS: The rs35303484 (*11; c136A>G; M46V) polymorphism was overrepresented in the high (S)-methadone level group, whereas the rs3745274 (*9; c516G>T; Q172H), rs2279344 (c822+183G>A), and rs8192719 (c1294+53C>T) polymorphisms were underrepresented in the low (S)-methadone level group, suggesting an association with decreased CYP2B6 activity. Conversely, the rs3211371 (*5; c1459C>T; R487C) polymorphism was overrepresented in the low-level group, indicating an increased CYP2B6 activity. A higher allele frequency was found in the high-level group compared with the low-level group for rs3745274 (*9; c516G>T; Q172H), rs2279343 (*4; c785A>G; K262R) (together representing CYP2B6*6), rs8192719 (c1294+53C>T), and rs2279344 (c822+183G>A), suggesting their involvement in decreased CYP2B6 activity. These results should be replicated in larger independent cohorts. CONCLUSION: Known genetic polymorphisms in CYP2B6 contribute toward explaining extreme (S)-methadone plasma levels observed in a cohort of patients following methadone maintenance treatment.
Resumo:
Time is embedded in any sensory experience: the movements of a dance, the rhythm of a piece of music, the words of a speaker are all examples of temporally structured sensory events. In humans, if and how visual cortices perform temporal processing remains unclear. Here we show that both primary visual cortex (V1) and extrastriate area V5/MT are causally involved in encoding and keeping time in memory and that this involvement is independent from low-level visual processing. Most importantly we demonstrate that V1 and V5/MT come into play simultaneously and seem to be functionally linked during interval encoding, whereas they operate serially (V1 followed by V5/MT) and seem to be independent while maintaining temporal information in working memory. These data help to refine our knowledge of the functional properties of human visual cortex, highlighting the contribution and the temporal dynamics of V1 and V5/MT in the processing of the temporal aspects of visual information.