993 resultados para LABORATORY MODELS
Resumo:
We develop methods for Bayesian model averaging (BMA) or selection (BMS) in Panel Vector Autoregressions (PVARs). Our approach allows us to select between or average over all possible combinations of restricted PVARs where the restrictions involve interdependencies between and heterogeneities across cross-sectional units. The resulting BMA framework can find a parsimonious PVAR specification, thus dealing with overparameterization concerns. We use these methods in an application involving the euro area sovereign debt crisis and show that our methods perform better than alternatives. Our findings contradict a simple view of the sovereign debt crisis which divides the euro zone into groups of core and peripheral countries and worries about financial contagion within the latter group.
Resumo:
The paper considers the use of artificial regression in calculating different types of score test when the log
Resumo:
Female Lutzomya longipalpis were exposed to infection by three different species/strains of Leishmania. When the insects were dissected four days after exposure, stained preparations were made of the flagellates contained in the digestive tract. Using traditional morphometric methods, L. amazonensis, L. guyanensis and an unnamed species of the mexicana complex could be distinguished from one another.
Resumo:
Time varying parameter (TVP) models have enjoyed an increasing popularity in empirical macroeconomics. However, TVP models are parameter-rich and risk over-fitting unless the dimension of the model is small. Motivated by this worry, this paper proposes several Time Varying dimension (TVD) models where the dimension of the model can change over time, allowing for the model to automatically choose a more parsimonious TVP representation, or to switch between different parsimonious representations. Our TVD models all fall in the category of dynamic mixture models. We discuss the properties of these models and present methods for Bayesian inference. An application involving US inflation forecasting illustrates and compares the different TVD models. We find our TVD approaches exhibit better forecasting performance than several standard benchmarks and shrink towards parsimonious specifications.
Resumo:
In this paper, we forecast EU-area inflation with many predictors using time-varying parameter models. The facts that time-varying parameter models are parameter-rich and the time span of our data is relatively short motivate a desire for shrinkage. In constant coefficient regression models, the Bayesian Lasso is gaining increasing popularity as an effective tool for achieving such shrinkage. In this paper, we develop econometric methods for using the Bayesian Lasso with time-varying parameter models. Our approach allows for the coefficient on each predictor to be: i) time varying, ii) constant over time or iii) shrunk to zero. The econometric methodology decides automatically which category each coefficient belongs in. Our empirical results indicate the benefits of such an approach.
Resumo:
Time-inconsistency is an essential feature of many policy problems (Kydland and Prescott, 1977). This paper presents and compares three methods for computing Markov-perfect optimal policies in stochastic nonlinear business cycle models. The methods considered include value function iteration, generalized Euler-equations, and parameterized shadow prices. In the context of a business cycle model in which a scal authority chooses government spending and income taxation optimally, while lacking the ability to commit, we show that the solutions obtained using value function iteration and generalized Euler equations are somewhat more accurate than that obtained using parameterized shadow prices. Among these three methods, we show that value function iteration can be applied easily, even to environments that include a risk-sensitive scal authority and/or inequality constraints on government spending. We show that the risk-sensitive scal authority lowers government spending and income-taxation, reducing the disincentive households face to accumulate wealth.
Resumo:
We introduce and investigate a series of models for an infection of a diplodiploid host species by the bacterial endosymbiont Wolbachia. The continuous models are characterized by partial vertical transmission, cytoplasmic incompatibility and fitness costs associated with the infection. A particular aspect of interest is competitions between mutually incompatible strains. We further introduce an age-structured model that takes into account different fertility and mortality rates at different stages of the life cycle of the individuals. With only a few parameters, the ordinary differential equation models exhibit already interesting dynamics and can be used to predict criteria under which a strain of bacteria is able to invade a population. Interestingly, but not surprisingly, the age-structured model shows significant differences concerning the existence and stability of equilibrium solutions compared to the unstructured model.
Resumo:
Immunology-based interventions have been proposed as a promising curative chance to effectively attack postoperative minimal residual disease and distant metastatic localizations of prostate tumors. We developed a chimeric antigen receptor (CAR) construct targeting the human prostate-specific membrane antigen (hPSMA), based on a novel and high affinity specific mAb. As a transfer method, we employed last-generation lentiviral vectors (LV) carrying a synthetic bidirectional promoter capable of robust and coordinated expression of the CAR molecule, and a bioluminescent reporter gene to allow the tracking of transgenic T cells after in vivo adoptive transfer. Overall, we demonstrated that CAR-expressing LV efficiently transduced short-term activated PBMC, which in turn were readily stimulated to produce cytokines and to exert a relevant cytotoxic activity by engagement with PSMA+ prostate tumor cells. Upon in vivo transfer in tumor-bearing mice, CAR-transduced T cells were capable to completely eradicate a disseminated neoplasia in the majority of treated animals, thus supporting the translation of such approach in the clinical setting.
Resumo:
Water movement in unsaturated soils gives rise to measurable electrical potential differences that are related to the flow direction and volumetric fluxes, as well as to the soil properties themselves. Laboratory and field data suggest that these so-called streaming potentials may be several orders of magnitudes larger than theoretical predictions that only consider the influence of the relative permeability and electrical conductivity on the self potential (SP) data. Recent work has improved predictions somewhat by considering how the volumetric excess charge in the pore space scales with the inverse of water saturation. We present a new theoretical approach that uses the flux-averaged excess charge, not the volumetric excess charge, to predict streaming potentials. We present relationships for how this effective excess charge varies with water saturation for typical soil properties using either the water retention or the relative permeability function. We find large differences between soil types and the predictions based on the relative permeability function display the best agreement with field data. The new relationships better explain laboratory data than previous work and allow us to predict the recorded magnitudes of the streaming potentials following a rainfall event in sandy loam, whereas previous models predict values that are three orders of magnitude too small. We suggest that the strong signals in unsaturated media can be used to gain information about fluxes (including very small ones related to film flow), but also to constrain the relative permeability function, the water retention curve, and the relative electrical conductivity function.
Resumo:
Fixed delays in neuronal interactions arise through synaptic and dendritic processing. Previous work has shown that such delays, which play an important role in shaping the dynamics of networks of large numbers of spiking neurons with continuous synaptic kinetics, can be taken into account with a rate model through the addition of an explicit, fixed delay. Here we extend this work to account for arbitrary symmetric patterns of synaptic connectivity and generic nonlinear transfer functions. Specifically, we conduct a weakly nonlinear analysis of the dynamical states arising via primary instabilities of the stationary uniform state. In this way we determine analytically how the nature and stability of these states depend on the choice of transfer function and connectivity. While this dependence is, in general, nontrivial, we make use of the smallness of the ratio in the delay in neuronal interactions to the effective time constant of integration to arrive at two general observations of physiological relevance. These are: 1 - fast oscillations are always supercritical for realistic transfer functions. 2 - Traveling waves are preferred over standing waves given plausible patterns of local connectivity.
Resumo:
In both species, maintained under laboratory environmental conditions, anautogeny was comproved and all females that had free access to proteic source were fertiles. We obtained the following average values for Peckiachrysostoma: 59.7 ± 15.6 and 81.8 ± 15.4 days of longevity in the respective cases of free access and no access to proteic source, 21.4 ± 4.3 days of pre-larviposition period and 35.2 ± 16.5 days of larviposition period, 5.3 ± 1.8 larvipositions female with 7.0 ± 1.1 days of periodicity, 35.7 ± 6.1 larvae per larviposition leading to a total number of 183.8 ± 69.2 viable larvae per female and 94.8% ± 5.3% of productivity. The mean number of ovarioles per female was 56.4 ± 9.8, resulting in a reproductive potential of 63.3%. For Adiscochaeta ingens, the obtained average values were: 41.3 ± 6.3 and 52 ± 13.1 days of longevity in the respective cases of free access and no access to proteic source, 15.3 ± 1.7 days of pre-larviposition period and 21.5 ± 7.5 days of larviposition period, 3 ± 0.7 larvipositions per female with 10.4 ± 0.8 days of periodicity, 30.3 ± 8.2 larvae per larviposition leading to a total number of 78.5 ± 21.7 viable larvae per female and 90.1% ± 16% of productivity. The mean number of ovarioles per female was 54.6 ± 5.2, resulting in a reproductive potential of 55.5%. Within applied parameters, the values obtained for P. chrysostoma demonstrate its superior productivity in comparison with A. ingens
Resumo:
Lamella formation and emigration from the water were investigated in juvenile Biomphalaria glabrata reared at two temperatures in aquaria with a constant water flow. Most snails (97.4%) reared at the lower temperature (21- C) formed lamella at the shell aperture and emigrated from the water, whereas only 10.1% did so at 25- C. Eighty percent of emigrations at 21- C occurred within a period of 15 days, 70-85 days after hatching. A comparison of the studies done so far indicates that the phenomenon may be affected by the ageing of snail colonies kept in the laboratory and their geographic origin, rather than the rearing conditions. This hypothesis, however, requires experimental confirmation.
Resumo:
In the present comparative study a Biomphalaria straminea sample from Picos (Piauí) showed expressive advantages related to fecundity over a B. glabrata sample from Belo Horizonte (Minas Gerais) such as: higher egg-mass production in 10 out of 12 months of study; higher egg production in all months of study; higher egg per egg-mass ratio in 11 out of 12 months of study; 66% of the egg-masses containing more than 20 eggs while in B. glabrata 70% of the egg-masses showed less than 20 eggs; three times less empty egg capsules than B. glabrata; attainning maximum fecundity in half the time required by B. glabrata. Mortality however was higher and sooner in B. straminea, suggesting higher semelparity in this species than in B. glabrata, a possibility that requires confirmation through long-term studies with other samples of both species. This first finding of a B. straminea sample more fecund than B. glabrata is discussed in relation to other data from the literature, and some recommendations are made on the quantification of fecundity of planorbid snails.
Resumo:
Previous work in our laboratory, mainly foccused the prospects of achieving resistance against Schistosoma mansoni infection with adult worm-derived antigens in the form of a soluble extract (SE). This extract obtained by incubation of living adult schistosomes in saline, contains a large number of distinct molecules and was actually shown to be a significantly protective in different outbred animals models such as Swiss mice and rabbits. It thus appeared worthwile to investigate the potencial protective activity of SE in different inbred strains of mice, known to be highly susceptible to the infection. Herein we present data showing that DBA/2 mice, once immunized with SE acquire significant levels of resistance to a S. mansoni cercarial challenge. In addition, preliminary studies on the immune system of immunized animals reveled that, injection of SE caused no general inbalance of B or T cell responses.