986 resultados para Knowledge-Products
Resumo:
The current issues debate brings together experts around the themes of self-sufficiency (in its national and European aspects) and of needs in cellular blood products. The point of view of the manufacturer and prescribers of blood products are confronted.
Resumo:
Ascidians have developed multiple defensive strategies mostly related to physical, nutritional or chemical properties of the tunic. One of such is chemical defense based on secondary metabolites. We analyzed a series of colonial Antarctic ascidians from deep-water collections belonging to the genera Aplidium and Synoicum to evaluate the incidence of organic deterrents and their variability. The ether fractions from 15 samples including specimens of the species A. falklandicum, A. fuegiense, A. meridianum, A. millari and S. adareanum were subjected to feeding assays towards two relevant sympatric predators: the starfish Odontaster validus, and the amphipod Cheirimedon femoratus. All samples revealed repellency. Nonetheless, some colonies concentrated defensive chemicals in internal body-regions rather than in the tunic. Four ascidian-derived meroterpenoids, rossinones B and the three derivatives 2,3-epoxy-rossinone B, 3-epi-rossinone B, 5,6-epoxy-rossinone B, and the indole alkaloids meridianins AG, along with other minoritary meridianin compounds were isolated from several samples. Some purified metabolites were tested in feeding assays exhibiting potent unpalatabilities, thus revealing their role in predation avoidance. Ascidian extracts and purified compound-fractions were further assessed in antibacterial tests against a marine Antarctic bacterium. Only the meridianins showed inhibition activity, demonstrating a multifunctional defensive role. According to their occurrence in nature and within our colonial specimens, the possible origin of both types of metabolites is discussed.
Resumo:
The objective of this work was to screen plants with insecticide activity, in order to isolate, identify and assess the bioactivity of insecticide compounds present in these plants, against Coleoptera pests of stored products: Oryzaephilus surinamensis L. (Silvanidae), Rhyzopertha dominica F. (Bostrichidae) and Sitophilus zeamais Mots. (Curculionidae). The plant species used were: basil (Ocimum selloi Benth.), rue (Ruta graveolens L.), lion's ear (Leonotis nepetifolia (L.) R.Br.), jimson weed (Datura stramonium L.), baleeira herb (Cordia verbenacea L.), mint (Mentha piperita L.), wild balsam apple (Mormodica charantia L.), and billy goat weed or mentrasto (Ageratum conyzoides L.). The insecticide activity of hexane and ethanol extracts from those plants on R. dominica was evaluated. Among them, only hexane extract of A. conyzoides showed insecticide activity; the hexane extract of this species was successively fractionated by silica gel column chromatography, for isolation and purification of the active compounds. Compounds 5,6,7,8,3',4',5'-heptamethoxyflavone; 5,6,7,8,3'-pentamethoxy-4',5'-methilenedioxyflavone and coumarin were identified. However, only coumarin showed insecticide activity against three insect pests (LD50 from 2.72 to 39.71 mg g-1 a.i.). The increasing order of insects susceptibility to coumarin was R. dominica, S. zeamais and O. surinamensis.
Resumo:
The aim of this work was the identification of new metabolites and transformation products (TPs) in chicken muscle from Enrofloxacin (ENR), Ciprofloxacin (CIP), Difloxacin (DIF) and Sarafloxacin (SAR), which are antibiotics that belong to the fluoroquinolones family. The stability of ENR, CIP, DIF and SAR standard solutions versus pH degradation process (from pH 1.5 to 8.0, simulating the pH since the drug is administered until its excretion) and freeze-thawing (F/T) cycles was tested. In addition, chicken muscle samples from medicated animals with ENR were analyzed in order to identify new metabolites and TPs. The identification of the different metabolites and TPs was accomplished by comparison of mass spectral data from samples and blanks, using liquid chromatography coupled to quadrupole time-of-flight (LC-QqToF) and Multiple Mass Defect Filter (MMDF) technique as a pre-filter to remove most of the background noise and endogenous components. Confirmation and structure elucidation was performed by liquid chromatography coupled to linear ion trap quadrupole Orbitrap (LC-LTQ-Orbitrap), due to its mass accuracy and MS/MS capacity for elemental composition determination. As a result, 21 TPs from ENR, 6 TPs from CIP, 14 TPs from DIF and 12 TPs from SAR were identified due to the pH shock and F/T cycles. On the other hand, 14 metabolites were identified from the medicated chicken muscle samples. Formation of CIP and SAR, from ENR and DIF, respectively, and the formation of desethylene-quinolone were the most remarkable identified compounds.
Resumo:
The aim of this work was the identification of new metabolites and transformation products (TPs) in chicken muscle from Enrofloxacin (ENR), Ciprofloxacin (CIP), Difloxacin (DIF) and Sarafloxacin (SAR), which are antibiotics that belong to the fluoroquinolones family. The stability of ENR, CIP, DIF and SAR standard solutions versus pH degradation process (from pH 1.5 to 8.0, simulating the pH since the drug is administered until its excretion) and freeze-thawing (F/T) cycles was tested. In addition, chicken muscle samples from medicated animals with ENR were analyzed in order to identify new metabolites and TPs. The identification of the different metabolites and TPs was accomplished by comparison of mass spectral data from samples and blanks, using liquid chromatography coupled to quadrupole time-of-flight (LC-QqToF) and Multiple Mass Defect Filter (MMDF) technique as a pre-filter to remove most of the background noise and endogenous components. Confirmation and structure elucidation was performed by liquid chromatography coupled to linear ion trap quadrupole Orbitrap (LC-LTQ-Orbitrap), due to its mass accuracy and MS/MS capacity for elemental composition determination. As a result, 21 TPs from ENR, 6 TPs from CIP, 14 TPs from DIF and 12 TPs from SAR were identified due to the pH shock and F/T cycles. On the other hand, 14 metabolites were identified from the medicated chicken muscle samples. Formation of CIP and SAR, from ENR and DIF, respectively, and the formation of desethylene-quinolone were the most remarkable identified compounds.
Resumo:
Pharmacologic agents that target protein products of oncogenes in tumors are playing an increasing clinical role in the treatment of cancer. Currently, the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) represent the standard of care for patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) harboring activating EGFR mutations. Subsequently other genetic abnormalities with "driver" characteristics - implying transforming and tumor maintenance capabilities have been extensively reported in several small distinct subsets of NSCLC. Among these rare genetic changes, anaplastic lymphoma kinase (ALK) gene rearrangements, most often consisting in a chromosome 2 inversion leading to a fusion with the echinoderm microtubule-associated protein like 4 (EML4) gene, results in the abnormal expression and activation of this tyrosine kinase in the cytoplasm of cancer cells. This rearrangement occurs in 2-5% of NSCLC, predominantly in young (50 years or younger), never- or former-smokers with adenocarcinoma. This aberration most commonly occurs a independently of EGFR and KRAS gene mutations. A fluorescent in situ hybridization assay was approved by the US Food and Drug Administration (FDA) as the standard method for the detection of ALK gene rearrangement in clinical practice and is considered the gold standard. Crizotinib, a first-in-class dual ALK and c-MET inhibitor, has been shown to be particularly effective against ALK positive NSCLC, showing dramatic and prolonged responses with low toxicity, predominantly restricted to the gastro-intestinal and visual systems, and generally self-limiting or easily managed. However, resistance to crizotinib inevitably emerges. The molecular mechanisms of resistance are currently under investigation, as are therapeutic approaches including crizotinib-based combination therapy and novel agents such as Hsp90 inhibitors. This review aims to present the current knowledge on this fusion gene, the clinic-pathological profile of ALK rearranged NSCLC, and to review the existing literature on ALK inhibitors, focusing on their role in the treatment of NSCLC.
Resumo:
R. solanacearum was ranked in a recent survey the second most important bacterial plant pathogen, following the widely used research model Pseudomonas syringae (Mansfield et al., 2012). The main reason is that bacterial wilt caused by R. solanacearum is the world"s most devastating bacterial plant disease (http://faostat.fao.org), threatening food safety in tropical and subtropical agriculture, especially in China, Bangladesh, Bolivia and Uganda (Martin and French, 1985). This is due to the unusually wide host range of the bacterium, its high persistence and because resistant crop varieties are unavailable. In addition, R. solanacearum has been established as a model bacterium for plant pathology thanks to pioneering molecular and genomic studies (Boucher et al., 1985; Cunnac et al., 2004b; Mukaihara et al., 2010; Occhialini et al., 2005; Salanoubat et al., 2002). As for many bacterial pathogens, the main virulence determinant in R. solanacearum is the type III secretion system (T3SS) (Boucher et al., 1994), which injects a number of effector proteins into plant cells causing disease in hosts or an hypersensitive response in resistant plants. In this article we discuss the current state in the study of the R. solanacearum T3SS, stressing the latest findings and future perspectives.
Resumo:
The Iowa Department of Natural Resources (IDNR) has requested the Iowa Department of Public Health (IDPH) Hazardous Waste Site Health Assessment Program to evaluate environmental data collected at former farm equipment manufacturing facility located in Charles City, Iowa. The site, most recently operated by Allied Products Corporation, is a 70-acre site located at 13th Street and E Street in Charles City, Iowa (Figure 1). The site is undergoing a Targeted Brownfields Assessment conducted by the Contaminated Sites Section of the IDNR. This health consultation addresses potential health risks to people from future exposure to the soil within the property boundary, and any health impacts resulting from contaminated groundwater beneath the site property. The information in this health consultation was current at the time of writing. Data that emerges later could alter this document’s conclusions and recommendations.
Resumo:
In this paper I present an endogenous growth model where the engine of growth is in-house R&D performed by high-tech firms. I model knowledge (patent) licensing among high-tech firms. I show that if there is knowledge licensing, high-tech firms innovate more and economic growth is higher than in cases when there are knowledge spillovers or there is no exchange of knowledge among high-tech firms. However, in case when there is knowledge licensing the number of high-tech firms is lower than in cases when there are knowledge spillovers or there is no exchange of knowledge.
Resumo:
In this paper I present an endogenous growth model where the engine of growth is in-house R&D performed by high-tech firms. I model knowledge (patent) licensing among high-tech firms. I show that if there is knowledge licensing, high-tech firms innovate more and economic growth is higher than in cases when there are knowledge spillovers or there is no exchange of knowledge among high-tech firms. However, in case when there is knowledge licensing the number of high-tech firms is lower than in cases when there are knowledge spillovers or there is no exchange of knowledge.
Resumo:
This report summarizes the purchase activity for soy based inks and recycled content trash bags for the Iowa Department of Transportation.