922 resultados para Kalman filters
Resumo:
This paper presents an analysis and comparison between two circuit topologies of the 3-phase, 3-level unity power factor (Vienna) rectifier on the basis of packaging issues and semiconductor power losses. The analysis indicates the suitability of one particular circuit variant due to restrictions on switching frequency at higher power levels. A comparison is also done between hysteresis and carrier based PWM strategies for current control of the rectifier, along with experimental evaluation of the control strategies on a hardware prototype of the rectifier. The comparison indicates that the carrier based modulation strategy is better suited for use with higher order filters that are utilized in high power applications.
Resumo:
Shoe-mounted inertial sensors offer a convenient way to track pedestrians in situations where other localization systems fail. This tutorial outlines a simple yet effective approach for implementing a reasonably accurate tracker. This Web extra presents the Matlab implementation and a few sample recordings for implementing the pedestrian inertial tracking system using an error-state Kalman filter for zero-velocity updates (ZUPTs) and orientation estimation.
Resumo:
Using a Girsanov change of measures, we propose novel variations within a particle-filtering algorithm, as applied to the inverse problem of state and parameter estimations of nonlinear dynamical systems of engineering interest, toward weakly correcting for the linearization or integration errors that almost invariably occur whilst numerically propagating the process dynamics, typically governed by nonlinear stochastic differential equations (SDEs). Specifically, the correction for linearization, provided by the likelihood or the Radon-Nikodym derivative, is incorporated within the evolving flow in two steps. Once the likelihood, an exponential martingale, is split into a product of two factors, correction owing to the first factor is implemented via rejection sampling in the first step. The second factor, which is directly computable, is accounted for via two different schemes, one employing resampling and the other using a gain-weighted innovation term added to the drift field of the process dynamics thereby overcoming the problem of sample dispersion posed by resampling. The proposed strategies, employed as add-ons to existing particle filters, the bootstrap and auxiliary SIR filters in this work, are found to non-trivially improve the convergence and accuracy of the estimates and also yield reduced mean square errors of such estimates vis-a-vis those obtained through the parent-filtering schemes.
Resumo:
Flood is one of the detrimental hydro-meteorological threats to mankind. This compels very efficient flood assessment models. In this paper, we propose remote sensing based flood assessment using Synthetic Aperture Radar (SAR) image because of its imperviousness to unfavourable weather conditions. However, they suffer from the speckle noise. Hence, the processing of SAR image is applied in two stages: speckle removal filters and image segmentation methods for flood mapping. The speckle noise has been reduced with the help of Lee, Frost and Gamma MAP filters. A performance comparison of these speckle removal filters is presented. From the results obtained, we deduce that the Gamma MAP is reliable. The selected Gamma MAP filtered image is segmented using Gray Level Co-occurrence Matrix (GLCM) and Mean Shift Segmentation (MSS). The GLCM is a texture analysis method that separates the image pixels into water and non-water groups based on their spectral feature whereas MSS is a gradient ascent method, here segmentation is carried out using spectral and spatial information. As test case, Kosi river flood is considered in our study. From the segmentation result of both these methods are comprehensively analysed and concluded that the MSS is efficient for flood mapping.
Resumo:
Exhaust noise in engines has always been a major source of automotive noise. Challenges for muffler design have been constraints on size, back pressure, and, of course, the cost. Designing for sufficient insertion loss at the engine firing frequency and the first few harmonics has been the biggest challenge. Most advances in the design of efficient mufflers have resulted from linear plane wave theory, making use of the transfer matrix method. This review paper deals with evaluating approximate source characteristics required for prediction of the unmuffled intake and exhaust noise, making use of the electroacoustical analogies. In the last few years, significant advances have been made in the analysis of variable area perforated ducts, transverse plane wave analysis of short elliptical as well as circular chambers, double-tuned expansion chambers and concentric tube resonators, catalytic converters, diesel particulate filters, air cleaners, etc. The development of long strand fibrous materials that can be used in hot exhaust systems without binders has led to the use of combination mufflers in exhaust systems. Breakthroughs have been achieved in the prediction and control of breakout noise from the elliptical and circular muffler shell as well as the end plates of typical mufflers. Diesel particulate filters and inlet air cleaners have also been modeled acoustically. Some of these recent advances are the subject of this review paper.
Resumo:
In this report, we investigate the problem of applying a range constraint in order to reduce the systematic heading drift in a foot-mounted inertial navigation system (INS) (motion-tracking). We make use of two foot-mounted INS, one on each foot, which are aided with zero-velocity detectors. A novel algorithm is proposed in order to reduce the systematic heading drift. The proposed algorithm is based on the idea that the separation between the two feet at any given instance must always lie within a sphere of radius equal to the maximum possible spatial separation between the two feet. A Kalman filter, getting one measurement update and two observation updates is used in this algorithm.
Resumo:
A study of the history and philosophy of the contribution of India towards the exploration of space since antiquity provides interesting insights. The contributions are described during the three periods namely: (1) the ten millenniums from 10,000 BC with a twilight period up to 900 AD; (2) the ten centuries from 900 AD to 1900 AD; and (3) the ten decades from 1900 AD to 2000 AD; called mythological, medieval, and modern respectively. Some important events during the above periods provide a reference view of the progress. The Vedas during the mythological period and the Siddhantas during the medieval periods, which are based on astronomical observations, indicate that the Indian contribution preceded other cultures. But most Western historians ignore this fact time and again in spite of many proofs provided to the contrary. This chapter also shows that Indians had the proper scientific attitude of developing any physical theory through the triplet of mind, model, and measurements. It is this same triplet that forms the basis of the present day well known Kalman filter technique. Up to about 1500 BC the Indian contribution was leading but during foreign invasion and occupation it lagged and has been improving only after independence.
Resumo:
A joint analysis-synthesis framework is developed for the compressive sensing (CS) recovery of speech signals. The signal is assumed to be sparse in the residual domain with the linear prediction filter used as the sparse transformation. Importantly this transform is not known apriori, since estimating the predictor filter requires the knowledge of the signal. Two prediction filters, one comb filter for pitch and another all pole formant filter are needed to induce maximum sparsity. An iterative method is proposed for the estimation of both the prediction filters and the signal itself. Formant prediction filter is used as the synthesis transform, while the pitch filter is used to model the periodicity in the residual excitation signal, in the analysis mode. Significant improvement in the LLR measure is seen over the previously reported formant filter estimation.
Resumo:
The problem of identification of multi-component and (or) spatially varying earthquake support motions based on measured responses in instrumented structures is considered. The governing equations of motion are cast in the state space form and a time domain solution to the input identification problem is developed based on the Kalman and particle filtering methods. The method allows for noise in measured responses, imperfections in mathematical model for the structure, and possible nonlinear behavior of the structure. The unknown support motions are treated as hypothetical additional system states and a prior model for these motions are taken to be given in terms of white noise processes. For linear systems, the solution is developed within the Kalman filtering framework while, for nonlinear systems, the Monte Carlo simulation based particle filtering tools are employed. In the latter case, the question of controlling sampling variance based on the idea of Rao-Blackwellization is also explored. Illustrative examples include identification of multi-component and spatially varying support motions in linear/nonlinear structures.
Resumo:
The ability of the continuous wavelet transform (CWT) to provide good time and frequency localization has made it a popular tool in time-frequency analysis of signals. Wavelets exhibit constant-Q property, which is also possessed by the basilar membrane filters in the peripheral auditory system. The basilar membrane filters or auditory filters are often modeled by a Gammatone function, which provides a good approximation to experimentally determined responses. The filterbank derived from these filters is referred to as a Gammatone filterbank. In general, wavelet analysis can be likened to a filterbank analysis and hence the interesting link between standard wavelet analysis and Gammatone filterbank. However, the Gammatone function does not exactly qualify as a wavelet because its time average is not zero. We show how bona fide wavelets can be constructed out of Gammatone functions. We analyze properties such as admissibility, time-bandwidth product, vanishing moments, which are particularly relevant in the context of wavelets. We also show how the proposed auditory wavelets are produced as the impulse response of a linear, shift-invariant system governed by a linear differential equation with constant coefficients. We propose analog circuit implementations of the proposed CWT. We also show how the Gammatone-derived wavelets can be used for singularity detection and time-frequency analysis of transient signals. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Impoverishment of particles, i.e. the discretely simulated sample paths of the process dynamics, poses a major obstacle in employing the particle filters for large dimensional nonlinear system identification. A known route of alleviating this impoverishment, i.e. of using an exponentially increasing ensemble size vis-a-vis the system dimension, remains computationally infeasible in most cases of practical importance. In this work, we explore the possibility of unscented transformation on Gaussian random variables, as incorporated within a scaled Gaussian sum stochastic filter, as a means of applying the nonlinear stochastic filtering theory to higher dimensional structural system identification problems. As an additional strategy to reconcile the evolving process dynamics with the observation history, the proposed filtering scheme also modifies the process model via the incorporation of gain-weighted innovation terms. The reported numerical work on the identification of structural dynamic models of dimension up to 100 is indicative of the potential of the proposed filter in realizing the stated aim of successfully treating relatively larger dimensional filtering problems. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
We propose to employ bilateral filters to solve the problem of edge detection. The proposed methodology presents an efficient and noise robust method for detecting edges. Classical bilateral filters smooth images without distorting edges. In this paper, we modify the bilateral filter to perform edge detection, which is the opposite of bilateral smoothing. The Gaussian domain kernel of the bilateral filter is replaced with an edge detection mask, and Gaussian range kernel is replaced with an inverted Gaussian kernel. The modified range kernel serves to emphasize dissimilar regions. The resulting approach effectively adapts the detection mask according as the pixel intensity differences. The results of the proposed algorithm are compared with those of standard edge detection masks. Comparisons of the bilateral edge detector with Canny edge detection algorithm, both after non-maximal suppression, are also provided. The results of our technique are observed to be better and noise-robust than those offered by methods employing masks alone, and are also comparable to the results from Canny edge detector, outperforming it in certain cases.
Resumo:
Hit-to-kill interception of high velocity spiraling target requires accurate state estimation of relative kinematic parameters describing spiralling motion. In this pa- per, spiraling target motion is captured by representing target acceleration through sinusoidal function in inertial frame. A nine state unscented Kalman filter (UKF) formulation is presented here with three relative positions, three relative velocities, spiraling frequency of target, inverse of ballistic coefficient and maneuvering coef-ficient. A key advantage of the target model presented here is that it is of generic nature and can capture spiraling as well as pure ballistic motions without any change of tuning parameters. Extensive Six-DOF simulation experiments, which includes a modified PN guidance and dynamic inversion based autopilot, show that near Hit-to-Kill performance can be obtained with noisy RF seeker measurements of gimbal angles, gimbal angle rates, range and range rate.
Resumo:
A Monte Carlo filter, based on the idea of averaging over characteristics and fashioned after a particle-based time-discretized approximation to the Kushner-Stratonovich (KS) nonlinear filtering equation, is proposed. A key aspect of the new filter is the gain-like additive update, designed to approximate the innovation integral in the KS equation and implemented through an annealing-type iterative procedure, which is aimed at rendering the innovation (observation prediction mismatch) for a given time-step to a zero-mean Brownian increment corresponding to the measurement noise. This may be contrasted with the weight-based multiplicative updates in most particle filters that are known to precipitate the numerical problem of weight collapse within a finite-ensemble setting. A study to estimate the a-priori error bounds in the proposed scheme is undertaken. The numerical evidence, presently gathered from the assessed performance of the proposed and a few other competing filters on a class of nonlinear dynamic system identification and target tracking problems, is suggestive of the remarkably improved convergence and accuracy of the new filter. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Voltage source inverter (VSI) fed six-phase induction motor drives have high 6n +/- 1; n = odd order harmonic currents, due to absence of back emf for these currents. To suppress these harmonic currents, either bulky inductive harmonic filters or complex pulse width modulation (PWM) techniques have to be used. This paper proposes a simple harmonic elimination scheme using capacitor fed inverters, for an asymmetrical six-phase induction motor VSI fed drive. Two three phase inverters fed from a single capacitor is used on the open-end side of the motor, to suppress 6n +/- 1; n = odd order harmonics. A PWM scheme that can suppress the harmonics, as well as balance the capacitor voltage is also proposed. The capacitor fed inverters are switched so that the fundamental voltage is not affected. The proposed scheme is verified using MATLAB Simulink simulation at different speeds. The effectiveness of the scheme is demonstrated by comparing the results with those obtained by disabling the capacitor fed inverters. Experimental results are also provided to validate the functionality of the proposed controller.