919 resultados para Jorge, Lidia
Resumo:
On the basis of the growing interest on the impact of airborne particles on human exposure as well as the strong debate in Western countries on the emissions of waste incinerators, this work reviewed existing literature to: (i) show the emission factors of ultrafine particles (particles with a diameter less than 100 nm) of waste incinerators, and; (ii) assess the contribution of waste incinerators in terms of ultrafine particles to exposure and dose of people living in the surrounding areas of the plants in order to estimate eventual risks. The review identified only a limited number of studies measuring ultrafine particle emissions, and in general they report low particle number concentrations at the stack (the median value was equal to 5.5×103 part cm-3), in most cases higher than the outdoor background value. The lowest emissions were achieved by utilization of the bag-house filter which has an overall number-based filtration efficiency higher than 99%. Referring to reference case, the corresponding emission factor is equal to 9.1×1012 part min-1, that is lower than one single high-duty vehicle. Since the higher particle number concentrations found in the most contributing microenvironments to the exposure (indoor home, transportation, urban outdoor), the contribution of the waste incinerators to the daily dose can be considered as negligible.
Resumo:
Despite recent efforts to assess the release of nanoparticles to the workplace during different nanotechnology activities, the existence of a generalizable trend in the particle release has yet to be identified. This study aimed to characterize the release of synthetic clay nanoparticles from a laboratory-based jet milling process by quantifying the variations arising from primary particle size and surface treatment of the material used, as well as the feed rate of the machine. A broad range of materials were used in this study, and the emitted particles mass (PM2.5) and number concentrations (PNC) were measured at the release source. Analysis of variance, followed by linear mixed-effects modeling, was applied to quantify the variations in PM2.5 and PNC of the released particles caused by the abovementioned factors. The results confirmed that using materials of different primary size and surface treatment affects the release of the particles from the same process by causing statistically-significant variations in PM2.5 and PNC. The interaction of these two factors should also be taken into account as it resulted in variations in the measured particles release properties. Furthermore, the feed rate of the milling machine was confirmed to be another influencing parameter. Although this research does not identify a specific pattern in the release of synthetic clay nanoparticles from the jet milling process generalizable to other similar settings, it emphasizes that each tested case should be handled individually in terms of exposure considerations.
Resumo:
The main aim of the present study was to estimate size segregated doses from e-cigarette aerosols as a function of the airway generation number in lung lobes.. After a 2-second puff, 7.7×1010 particles (DTot) with a surface area of 3.6×103 mm2 (STot), and 3.3×1010 particles with a surface area of 4.2×103 mm2 were deposited in the respiratory system for the electronic and conventional cigarettes, respectively. Alveolar and tracheobronchial deposited doses were compared to the ones received by non-smoking individuals in Western countries, showing a similar order of magnitude. Total regional doses (DR), in head and lobar tracheobronchial and alveolar regions, ranged from 2.7×109 to 1.3×1010 particles and 1.1×109 to 5.3×1010 particles, for the electronic and conventional cigarettes, respectively. DR in the right-upper lung lobe was about twice that found in left-upper lobe and 20% greater in right-lower lobe than the left-lower lobe.
Resumo:
Long term exposure to organic pollutants, both inside and outside school buildings may affect children’s health and influence their learning performance. Since children spend significant amount of time in school, air quality, especially in classrooms plays a key role in determining the health risks associated with exposure at schools. Within this context, the present study investigated the ambient concentrations of Volatile Organic Compounds (VOCs) in 25 primary schools in Brisbane with the aim to quantify the indoor and outdoor VOCs concentrations, identify VOCs sources and their contribution, and based on these; propose mitigation measures to reduce VOCs exposure in schools. One of the most important findings is the occurrence of indoor sources, indicated by the I/O ratio >1 in 19 schools. Principal Component Analysis with Varimax rotation was used to identify common sources of VOCs and source contribution was calculated using an Absolute Principal Component Scores technique. The result showed that outdoor 47% of VOCs were contributed by petrol vehicle exhaust but the overall cleaning products had the highest contribution of 41% indoors followed by air fresheners and art and craft activities. These findings point to the need for a range of basic precautions during the selection, use and storage of cleaning products and materials to reduce the risk from these sources.
Resumo:
Recent 'Global Burden of Disease' studies have provided quantitative evidence of the significant role air pollution plays as a human health risk factor (Lim et al., The Lancet, 380: 2224–2260, 2012). Tobacco smoke, including second hand smoke, household air pollution from solid fuels and ambient particulate matter are among the top risks, leading to lower life expectancy around the world. Indoor air constitutes an environment particularly rich in different types of pollutants, originating from indoor sources, as well as penetrating from outdoors, mixing, interacting or growing (when considering microbes) under the protective enclosure of the building envelope. Therefore, it is not a simple task to follow the dynamics of the processes occurring there, or to quantify the outcomes of the processes in terms of pollutant concentrations and other characteristics. This is further complicated by limitations such as building access for the purpose of air quality monitoring, or the instrumentation which can be used indoors, because of their possible interference with the occupants comfort (due to their large size, noise generated or amount of air drawn). European studies apportioned contributions of indoor versus outdoor sources of indoor air contaminants in 26 European countries and quantified IAQ associated DALYs (Disability-Adjusted Life Years) in those countries (Jantunen et al., Promoting actions for healthy indoor air (IAIAQ), European Commission Directorate General for Health and Consumers, Luxembourg, 2011). At the same time, there has been an increase in research efforts around the world to better understand the sources, composition, dynamics and impacts of indoor air pollution. Particular focus has been directed towards the contemporary sources, novel pollutants and new detection methods. The importance of exposure assessment and personal exposure, the majority of which occurs in various indoor micro¬environments, has also been realized. Overall, this emerging knowledge has been providing input for global assessments of indoor environments, the impact of indoor pollutants and their science based management and control. It was a major outcome of recent international conferences that interdisciplinarity and especially a better colla¬boration between exposure and indoor sciences would be of high benefit for the health related evaluation of environmental stress factors and pollutants. A very good example is the combination of biomonitoring and indoor air, particle and dust analysis to study the exposure routes of semi volatile organic compounds (SVOCs). We have adopted the idea of combining the forces of exposure and indoor sciences for this Special Issue, identified new and challenging topics and have attracted colleagues who are top researchers in their field to provide their inputs. The Special Issue includes papers, which collectively present advances in current research topics and in our view, build the bridge between indoor and exposure sciences.
Resumo:
There is currently a lack of reference values for indoor air fungal concentrations to allow for the interpretation of measurement results in subtropical school settings. Analysis of the results of this work established that, in the majority of properly maintained subtropical school buildings, without any major affecting events such as floods or visible mould or moisture contamination, indoor culturable fungi levels were driven by outdoor concentration. The results also allowed us to benchmark the “baseline range” concentrations for total culturable fungi, Penicillium spp., Cladosporium spp. and Aspergillus spp. in such school settings. The measured concentration of total culturable fungi and three individual fungal genera were estimated using Bayesian hierarchical modelling. Pooling of these estimates provided a predictive distribution for concentrations at an unobserved school. The results indicated that “baseline” indoor concentration levels for indoor total fungi, Penicillium spp., Cladosporium spp. and Aspergillus spp. in such school settings were generally ≤ 1450, ≤ 680, ≤ 480 and ≤ 90 cfu/m3, respectively, and elevated levels would indicate mould damage in building structures. The indoor/outdoor ratio for most classrooms had 95% credible intervals containing 1, indicating that fungi concentrations are generally the same indoors and outdoors at each school. Bayesian fixed effects regression modeling showed that increasing both temperature and humidity resulted in higher levels of fungi concentration.
Resumo:
A quantitative understanding of outdoor air quality in school environments is crucial given that air pollution levels inside classrooms are significantly influenced by outdoor pollution sources. To date, only a handful of studies have been conducted on this important topic in developing countries. The aim of this study was to quantify pollutant levels in the outdoor environment of a school in Bhutan and assess the factors driving them. Measurements were conducted for 16 weeks, spanning the wet and dry seasons, in a rural school in Bhutan. PM10, PM2.5, particle number (PN) and CO were measured daily using real-time instruments, while weekly samples for volatile organic compounds (VOCs), carbonyls and NO2 were collected using a passive sampling method. Overall mean PM10 and PM2.5 concentrations (µg/m3) were 27 and 13 for the wet, and 36 and 29 for the dry season, respectively. Only wet season data were available for PN concentrations, with a mean of 2.56 × 103 particles/cm3. Mean CO concentrations were below the detection limit of the instrumentation for the entire measurement period. Only low levels of eight VOCs were detected in both the wet and dry seasons, which presented different seasonal patterns in terms of the concentration of different compounds. The notable carbonyls were formaldehyde and hexaldehyde, with mean concentrations (µg/m3) of 2.37 and 2.41 for the wet, and 6.22 and 0.34 for the dry season, respectively. Mean NO2 cocentration for the dry season was 1.7 µg/m3, while it was below the detection limit of the instrumentation for the wet season. The pollutant concentrations were associated with a number of factors, such as cleaning and combustion activities in and around the school. A comparison with other school studies showed comparable results with a few of the studies, but in general, we found lower pollutant concentrations in the present study.
Resumo:
The aim of this paper is to determine the suitability of solely stationary measurements for exposure assessment and management applications. For this purpose, quantified inhaled particle surface area (IPSA) doses using both stationary and personal particle exposure monitors were evaluated and compared.
Resumo:
Airborne bioaerosols are becoming increasingly recognized as a potential route of transmission for the spread of bacterial and viral respiratory tract infections.
Resumo:
Exposure to atmospheric ultrafine particles (UFPs, D<100 nm) has been an increasingly concern because of their potential impact one health. Motor vehicle emissions are considered as one of the major source of UFPin urban airshed, as the combustion of both petrol and diesel engine leads to emission of particles which are predominantly in this size range (Ban-Weiss et al, 2010; Morawska et al, 2008). New particle formations (NPFs) and major facilities such as airport or seaport has also been identified as major sources of UFPs in urban airshed (Cheung et al, 2010; González et al, 2011; Mazaheri et al, 2013). However, contribution of those urban sources to ambient UFP concentrations has not been comprehensively characterized.
Resumo:
The Air Pollution Model and Chemical Transport Model (TAPM-CTM) framework has been tested and applied originally in Sydney to quantify particle and gaseous concentration (Cope et al, 2014). However, the model performance had not been tested in the south-eastern Queensland region (SEQR), Australia.
Resumo:
PBDE concentrations are higher in children compared to adults with exposure suggested to include dust ingestion. Besides the home environment, children spend a great deal of time in school classrooms which may be a source of exposure. As part of the “Ultrafine Particles from Traffic Emissions and Children's Health (UPTECH)” project, dust samples (n=28) were obtained in 2011/12 from 10 Brisbane, Australia metropolitan schools and analysed using GC and LC–MS for polybrominated diphenyl ethers (PBDEs) -17, -28, -47, -49, -66, -85, -99, -100, -154, -183, and -209. Σ11PBDEs ranged from 11–2163 ng/g dust; with a mean and median of 600 and 469 ng/g dust, respectively. BDE-209 (range n.d. −2034 ng/g dust; mean (median) 402 (217) ng/g dust) was the dominant congener in most classrooms. Frequencies of detection were 96%, 96%, 39% and 93% for BDE-47, -99, -100 and -209, respectively. No seasonal variations were apparent and from each of the two schools where XRF measurements were carried out, only two classroom items had detectable bromine. PBDE intake for 8–11 year olds can be estimated at 0.094 ng/day BDE-47; 0.187 ng/day BDE-99 and 0.522 ng/day BDE-209 as a result of ingestion of classroom dust, based on mean PBDE concentrations. The 97.5% percentile intake is estimated to be 0.62, 1.03 and 2.14 ng/day for BDEs-47, -99 and -209, respectively. These PBDE concentrations in dust from classrooms, which are higher than in Australian homes, may explain some of the higher body burden of PBDEs in children compared to adults when taking into consideration age-dependant behaviours which increase dust ingestion.
Resumo:
The study monitored the emissions of volatile organic compounds (VOCs) from the exhaust of cars fuelled by liquefied petroleum gas (LPG) and unleaded petrol (ULP). Six cars, four fuelled by LPG and two by ULP, were tested on a chassis dynamometer at two different cruising modes of operation (60 km h−1 and 80 km h−1) and idle. A total of 33 VOCs were identified in the exhaust of both types of fuels by the use of GC/MS. Due to the complexity of the dataset, Multi Criteria Decision Making (MCDM) software PROMETHEE and GAIA was used to rank the least polluting mode and fuel. The 60 km h−1 driving speed was identified as the cleaner mode of driving as was LPG fuel. The Ozone Formation Potential (OFP) of the VOCs was also calculated by using the incremental reactivity scale. Priority VOCs leading to ozone formation were identified according to the three incremental reactivity scales: MIR, MOIR and EBIR. PROMETHEE was applied to assess the most preferred scale of reactivity for predicting ozone formation potential under different scenarios. The results enhance the understanding of the environmental value of using LPG to power passenger cars.
Resumo:
Background Up-to-date evidence about levels and trends in disease and injury incidence, prevalence, and years lived with disability (YLDs) is an essential input into global, regional, and national health policies. In the Global Burden of Disease Study 2013 (GBD 2013), we estimated these quantities for acute and chronic diseases and injuries for 188 countries between 1990 and 2013. Methods Estimates were calculated for disease and injury incidence, prevalence, and YLDs using GBD 2010 methods with some important refi nements. Results for incidence of acute disorders and prevalence of chronic disorders are new additions to the analysis. Key improvements include expansion to the cause and sequelae list, updated systematic reviews, use of detailed injury codes, improvements to the Bayesian meta-regression method (DisMod-MR), and use of severity splits for various causes. An index of data representativeness, showing data availability, was calculated for each cause and impairment during three periods globally and at the country level for 2013. In total, 35 620 distinct sources of data were used and documented to calculated estimates for 301 diseases and injuries and 2337 sequelae. The comorbidity simulation provides estimates for the number of sequelae, concurrently, by individuals by country, year, age, and sex. Disability weights were updated with the addition of new population-based survey data from four countries. Findings Disease and injury were highly prevalent; only a small fraction of individuals had no sequelae. Comorbidity rose substantially with age and in absolute terms from 1990 to 2013. Incidence of acute sequelae were predominantly infectious diseases and short-term injuries, with over 2 billion cases of upper respiratory infections and diarrhoeal disease episodes in 2013, with the notable exception of tooth pain due to permanent caries with more than 200 million incident cases in 2013. Conversely, leading chronic sequelae were largely attributable to non-communicable diseases, with prevalence estimates for asymptomatic permanent caries and tension-type headache of 2∙4 billion and 1∙6 billion, respectively. The distribution of the number of sequelae in populations varied widely across regions, with an expected relation between age and disease prevalence. YLDs for both sexes increased from 537∙6 million in 1990 to 764∙8 million in 2013 due to population growth and ageing, whereas the age-standardised rate decreased little from 114∙87 per 1000 people to 110∙31 per 1000 people between 1990 and 2013. Leading causes of YLDs included low back pain and major depressive disorder among the top ten causes of YLDs in every country. YLD rates per person, by major cause groups, indicated the main drivers of increases were due to musculoskeletal, mental, and substance use disorders, neurological disorders, and chronic respiratory diseases; however HIV/AIDS was a notable driver of increasing YLDs in sub-Saharan Africa. Also, the proportion of disability-adjusted life years due to YLDs increased globally from 21·1% in 1990 to 31·2% in 2013. Interpretation Ageing of the world’s population is leading to a substantial increase in the numbers of individuals with sequelae of diseases and injuries. Rates of YLDs are declining much more slowly than mortality rates. The non-fatal dimensions of disease and injury will require more and more attention from health systems. The transition to nonfatal outcomes as the dominant source of burden of disease is occurring rapidly outside of sub-Saharan Africa. Our results can guide future health initiatives through examination of epidemiological trends and a better understanding of variation across countries.
Resumo:
The study of 1777 male and female adolescent students of 11-19 years in the Colombian Caribbean had two objectives: development and validation of two reproductive health intention scales and analyze gender differences. The pilot of the scale consisted of 8 items and was reduced to 6, to check the reliability and validity using factor analysis and principal components with VARIMAX rotation yielded two factors: Intention and Intention Risk Protection, explained between 69.4% and 70% respectively. In the male Protection Intent (M = 3.87 and SD = 1.29) and risk (M = 2.56 and SD = 1.18) obtained an alpha between 0.74 and 0.86, and in Protection of Intent to female (M = 3.49 and SD = 1.35) and risk (M = 1.50 and SD = 0.89) ranged between 0.78 and 086. In conclusion, the reliability and structural stability are adequate and there are gender differences in the scales.