855 resultados para Iterative Optimization
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Cogeneration system design deals with several parameters in the synthesis phase, where not only a thermal cycle must be indicated but the general arrangement, type, capacity and number of machines need to be defined. This problem is not trivial because many parameters are considered as goals in the project. An optimization technique that considers costs and revenues, reliability, pollutant emissions and exergetic efficiency as goals to be reached in the synthesis phase of a cogeneration system design process is presented. A discussion of appropriated values and the results for a pulp and paper plant integration to a cogeneration system are shown in order to illustrate the proposed methodology.
Resumo:
A parameter-free variational iterative method is proposed for scattering problems. The present method yields results that are far better, in convergence, stability and precision, than any other momentum space method. Accurate result is obtained for the atomic exponential (Yukawa) potential with an estimated error of less than 1 in 1015 (1010) after some 13 (10) iterations.
Resumo:
Cogeneration system design deals with several parameters in the synthesis phase, where not only a thermal cycle must be indicated but the general arrangement, type, capacity and number of machines need to be defined. This problem is not trivial because many parameters are considered as goals in the project. An optimization technique that considers costs and revenues, reliability, pollutant emissions and exergetic efficiency as goals to be reached in the synthesis phase of a cogeneration system design process is presented. A discussion of appropriated values and the results for a pulp and paper plant integration to a cogeneration system are shown in order to illustrate the proposed methodology.
Resumo:
The effect of three independent fermentation variables: demineralized whey powder (0.0; 1.5 and 3.0%), lactic culture concentration (1.0; 2.0 and 3.0%) and mix treatment temperature (85; 90 and 95°C) was studied. Fermentation time to reach pH 4.3, instrumental consistency and appearance, visual consistency and taste of the product were evaluated. Product consistency increased as mix treatment temperature increased and demineralized whey powder decreased. The powder had a stronger influence on instrumental consistency than did temperature. Appearance was better when whey powder was used at 1.4 to 1.6%. Visual consistency decreased as whey powder increased but addition of demineralized whey powder did not negatively affect yogurt flavor.
Resumo:
We have investigated and extensively tested three families of non-convex optimization approaches for solving the transmission network expansion planning problem: simulated annealing (SA), genetic algorithms (GA), and tabu search algorithms (TS). The paper compares the main features of the three approaches and presents an integrated view of these methodologies. A hybrid approach is then proposed which presents performances which are far better than the ones obtained with any of these approaches individually. Results obtained in tests performed with large scale real-life networks are summarized.
Resumo:
We introduce a new hybrid approach to determine the ground state geometry of molecular systems. Firstly, we compared the ability of genetic algorithm (GA) and simulated annealing (SA) to find the lowest energy geometry of silicon clusters with six and 10 atoms. This comparison showed that GA exhibits fast initial convergence, but its performance deteriorates as it approaches the desired global extreme. Interestingly, SA showed a complementary convergence pattern, in addition to high accuracy. Our new procedure combines selected features from GA and SA to achieve weak dependence on initial parameters, parallel search strategy, fast convergence and high accuracy. This hybrid algorithm outperforms GA and SA by one order of magnitude for small silicon clusters (Si6 and Si10). Next, we applied the hybrid method to study the geometry of a 20-atom silicon cluster. It was able to find an original geometry, apparently lower in energy than those previously described in literature. In principle, our procedure can be applied successfully to any molecular system. © 1998 Elsevier Science B.V.
Resumo:
An inverse problem concerning the industrial process of steel bars hardening and tempering is considered. The associated optimization problem is formulated in terms of membership functions and, for the sake of comparison, also in terms of quadratic residuals; both geometric and electromagnetic design variables have been considered. The numerical solution is achieved by coupling a finite difference procedure for the calculation of the electromagnetic and thermal fields to a deterministic strategy of minimization based on modified Flctcher and Reeves method. © 1998 IEEE.
Resumo:
This paper addresses the problem of model reduction for uncertain discrete-time systems with convex bounded (polytope type) uncertainty. A reduced order precisely known model is obtained in such a way that the H2 and/or the H∞ guaranteed norm of the error between the original (uncertain) system and the reduced one is minimized. The optimization problems are formulated in terms of coupled (non-convex) LMIs - Linear Matrix Inequalities, being solved through iterative algorithms. Examples illustrate the results.
Resumo:
A branch and bound algorithm is proposed to solve the H2-norm model reduction problem for continuous-time linear systems, with conditions assuring convergence to the global optimum in finite time. The lower and upper bounds used in the optimization procedure are obtained through Linear Matrix Inequalities formulations. Examples illustrate the results.
Resumo:
The iterative quadratic maximum likelihood IQML and the method of direction estimation MODE are well known high resolution direction-of-arrival DOA estimation methods. Their solutions lead to an optimization problem with constraints. The usual linear constraint presents a poor performance for certain DOA values. This work proposes a new linear constraint applicable to both DOA methods and compare their performance with two others: unit norm and usual linear constraint. It is shown that the proposed alternative performs better than others constraints. The resulting computational complexity is also investigated.
Resumo:
The ability of neural networks to realize some complex nonlinear function makes them attractive for system identification. This paper describes a novel barrier method using artificial neural networks to solve robust parameter estimation problems for nonlinear model with unknown-but-bounded errors and uncertainties. This problem can be represented by a typical constrained optimization problem. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach.
Resumo:
In this work five methods of heat treatments are investigated in order to obtained convenient volume fractions of ferrite, bainite, martensite and retained austenite, starting with a low carbon steel and seeking the distinction of the phases, through optical microscopy. Specific chemical etching is improved. The results in tensile and fatigue tests were accomplished and the results were related with the microstructural parameters. The results show that the mechanical properties are closely related with the phases, grains size and the phases morphology. Copyright © 2001 Society of Automotive Engineers, Inc.
Resumo:
Variational inequalities and related problems may be solved via smooth bound constrained optimization. A comprehensive discussion of the important features involved with this strategy is presented. Complementarity problems and mathematical programming problems with equilibrium constraints are included in this report. Numerical experiments are commented. Conclusions and directions of future research are indicated.
Resumo:
In this article we describe a feature extraction algorithm for pattern classification based on Bayesian Decision Boundaries and Pruning techniques. The proposed method is capable of optimizing MLP neural classifiers by retaining those neurons in the hidden layer that realy contribute to correct classification. Also in this article we proposed a method which defines a plausible number of neurons in the hidden layer based on the stem-and-leaf graphics of training samples. Experimental investigation reveals the efficiency of the proposed method. © 2002 IEEE.