955 resultados para Isometric Axial Rotation
Resumo:
As the number of solutions to the Einstein equations with realistic matter sources that admit closed time-like curves (CTC's) has grown drastically, it has provoked some authors [10] to call for a physical interpretation of these seemingly exotic curves that could possibly allow for causality violations. A first step in drafting a physical interpretation would be to understand how CTC's are created because the recent work of [16] has suggested that, to follow a CTC, observers must counter-rotate with the rotating matter, contrary to the currently accepted explanation that it is due to inertial frame dragging that CTC's are created. The exact link between inertialframe dragging and CTC's is investigated by simulating particle geodesics and the precession of gyroscopes along CTC's and backward in time oriented circular orbits in the van Stockum metric, known to have CTC's that could be traversal, so the van Stockum cylinder could be exploited as a time machine. This study of gyroscopeprecession, in the van Stockum metric, supports the theory that CTC's are produced by inertial frame dragging due to rotating spacetime metrics.
Resumo:
the aim of this study was to investigate specific activation patterns and potential gender differences during mental rotation and to investigate whether functional magnetic resonance imaging (fMRI) and functional transcranial Doppler sonography (fTCD) lateralize hemispheric dominance concordantly.
Resumo:
Developmental dysplasia of the hip (DDH) and acetabular retroversion represent distinct acetabular pathomorphologies. Both are associated with alterations in pelvic morphology. In cases where direct radiographic assessment of the acetabulum is difficult or impossible or in mixed cases of DDH and retroversion, additional indirect pelvimetric parameters would help identify the major underlying structural abnormality.
Resumo:
To demonstrate the potential benefits of biochemical axial T2 mapping of intervertebral discs (IVDs) regarding the detection and grading of early stages of degenerative disc disease using 1.5-Tesla magnetic resonance imaging (MRI) in a clinical setting.
Resumo:
OBJECTIVE: The aim of this study was to establish an MRI classification system for intervertebral disks using axial T2 mapping, with a special focus on evaluating early degenerative intervertebral disks. MATERIALS AND METHODS: Twenty-nine healthy volunteers (19 men, 10 women; age range, 20-44 years; mean age, 31.8 years) were studied, and axial T2 mapping was performed for the L3-L4, L4-L5, and L5-S1 intervertebral disks. Grading was performed using three classification systems for degenerative disks: our system using axial T2 mapping and two other conventional classification systems that focused on the signal intensity of the nucleus pulposus or the structural morphology in sagittal T2-weighted MR images. We analyzed the relationship between T2, which is known to correlate with change in composition of intervertebral disks, and degenerative grade determined using the three classification systems. RESULTS: With axial T2 mapping, differences in T2 between grades I and II were smaller and those between grades II and III, and between grades III and IV, were larger than those with the other grading systems. The ratio of intervertebral disks classified as grade I was higher with the conventional classification systems than that with axial T2 mapping. In contrast, the ratio of intervertebral disks classified as grade II or III was higher with axial T2 mapping than that with the conventional classification systems. CONCLUSION: Axial T2 mapping provides a more T2-based classification. The new system may be able to detect early degenerative changes before the conventional classification systems can.
Resumo:
PURPOSE: To evaluate the diagnostic accuracy of in situ postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) in the detection of primary traumatic extra-axial hemorrhage. MATERIALS AND METHODS: Thirty forensic neurotrauma cases and 10 nontraumatic controls who underwent both in situ postmortem cranial MSCT and MR imaging before autopsy were retrospectively reviewed. Both imaging modalities were analyzed in view of their accuracy, sensitivity, and specificity concerning the detection of extra-axial hemorrhage. Statistical significance was calculated using the McNemar test. kappa values for interobserver agreement were calculated for extra-axial hemorrhage types and to quantify the agreement between both modalities as well as MRI, CT, and forensics, respectively. RESULTS: Analysis of the detection of hemorrhagic localizations showed an accuracy, sensitivity, and specificity of 89%, 82%, and 92% using CT, and 90%, 83%, and 94% using MRI, respectively. MRI was more sensitive than CT in the detection of subarachnoid hemorrhagic localizations (P = 0.001), whereas no significant difference resulted from the detection of epidural and subdural hemorrhagic findings (P = 0.248 and P = 0.104, respectively). Interobserver agreement for all extra-axial hemorrhage types was substantial (CT kappa = 0.76; MRI kappa = 0.77). The agreement of both modalitites was almost perfect (readers 1 and 2 kappa = 0.88). CONCLUSION: CT and MRI are of comparable potential as forensic diagnostic tools for traumatic extra-axial hemorrhage. Not only of forensic, but also of clinical interest is the observation that most thin blood layers escape the radiological evaluation.
Resumo:
Due to the inherent limitations of DXA, assessment of the biomechanical properties of vertebral bodies relies increasingly on CT-based finite element (FE) models, but these often use simplistic material behaviour and/or single loading cases. In this study, we applied a novel constitutive law for bone elasticity, plasticity and damage to FE models created from coarsened pQCT images of human vertebrae, and compared vertebral stiffness, strength and damage accumulation for axial compression, anterior flexion and a combination of these two cases. FE axial stiffness and strength correlated with experiments and were linearly related to flexion properties. In all loading modes, damage localised preferentially in the trabecular compartment. Damage for the combined loading was higher than cumulated damage produced by individual compression and flexion. In conclusion, this FE method predicts stiffness and strength of vertebral bodies from CT images with clinical resolution and provides insight into damage accumulation in various loading modes.