950 resultados para Invertebrates, Fossil.
Resumo:
A Bacia sedimentar do Araripe é uma das mais ricas localidades fossilferas do mundo e representa algumas das principais fases da evolução tectônica ligadas ao processo de abertura do Atlântico Sul. Essa bacia se subdivide em dois pacotes estratigráficos distintos: o Grupo Cariri (constituído pelas formações Cariri, Missão Velha e Rio Batateiras) e o Grupo Araripe (constituído pelas formações Crato, Ipubi, Santana e Exu). No caso do Grupo Cariri, apenas a Formação Missão Velha (= Brejo Santo para alguns autores) apresenta restos de peixes fósseis. Essa fauna, típica da fase rift da separação da parte oeste do Gondwana, pode ser comparada à ictiofauna já descrita no Grupo Bahia e à fauna encontrada em diversas bacias interiores do Nordeste do Brasil. O presente trabalho constou da realização de coletas na Formação Missão Velha, identificação, preparação e descrição dos espécimes coletados; comparação da paleoictiofauna dessa formação com a de outras bacias de mesma idade; análise da distribuição paleobiogeográfica dos grupos ali presentes. Apesar de desarticulados, foram identificados seis táxons de peixes, assim como fragmentos de teleósteos não identificados. Os táxons identificados a partir do material coletado são: dentes, espinhos cefálicos e espinhos de nadadeira dorsal de Hybodontiformes; escamas, dentes e ossos desarticulados de Lepidotes sp.; escamas de Pleuropholidae; diversos ossos desarticulados de Mawsonia cf. gigas; placa dentária e outros ossos isolados de Ceratodus sp. Essa fauna é muito importante, pois representa uma biota lacustrina do Neocomiano do Brasil, depositada durante os estágios pré-rift/rift da separação do oeste do Gondwana. Durante a fase pré-rift e rift pode ser observada uma correlação estratigráfica entre a Formação Missão Velha e as bacias marginais da África ocidental. Portanto, a biota presente na Formação Missão Velha auxilia a compreensão da diversidade faunística presente nos estágios pré-rift e rift do Brasil e da África.
Resumo:
Epilithic algae, ie that growing on the surface of stones, was studied as part of the work on the energy flow of the chalk-stream ecosystem, by the River Laboratory. The study area was on Bere Stream and 2 neighbouring streams. The algal biomass was estimated from analysis of chlorophyll a. In Bere Stream the peak chlorophyll a cover occurred in April, while in the neighbouring streams, which have considerably lower nutrient levels, there was on peak. Assuming that 2% of a diatoms dry wt is chlorophyll a, then even in mid-April the biomass of epilithic algae amounted to no more than 15 g dry wt m Super(-2) of exposed gravel. Annual production was calculated to be > 15 times greater than biomass. The estimation of net primary production is always difficult for benthic floras and comparisons are especially difficult when different methods are used. But these figures contrast sharply with those for Ranunculus (water crowfoot) which has a ratio of annual production to maximal seasonal biomass of 1:16. The accumulation of algal biomass is apparently being prevented. Some organic matter may be excreted; some algae will be washed off the bed of the stream by current and grazing by herbivorous invertebrates will also tend to prevent algal accumulation.
Resumo:
The Gussage, a Dorset winterhourne (intermittent chalk stream), has been used to convey water from a compensation borehole to the River Allen to supplement its flow to meet demand for water. Sections of the Gussage have been lined with chalk, butyl sheeting or polythene sheeting to prevent water loss through the porous bed. The effects of this major environmental modification associated with these abstraction practices in the winterbourne catchments have been studied in the Gussage system since 1973. To compensate for the lack of adequate pre-lining data, comparative studies have been made on 3 small unlined chalk streams of varying flow regimes, ie. the Crichel (a winterbourne), the North Winterbourne and the Tarrant (permanent discharge in the reaches studies). The distribution of macrophytes and invertebrates in winterbournes are compared with that in natural and artificial permanent streams. Statistical analysis showed samples from the winterbourne sites and the unmodified permanent stream sites are quite distinct, despite the fact that no samples were taken from winterbourne sites during the dry phase. This emphasizes the differences between the fauna of an intermittent and a permanent stream and suggests that alteration of the flow regime could be a significant factor. Where flow regime has been altered, as in the Gussage downstream of the borehole, the samples occupy an intermediate position. Within this group of modified sites there is no apparent gross difference between the invertebrates of lined or unlined reaches.
Resumo:
This review deals with the variation in populations of invertebrates and the relationships between invertebrate production and detrital food material in chalk streams. The total quantity of detrital material processed by invertebrate consumers is many times greater than the production of these consumers. The amount of detritus ingested each year by chalk stream invertebrates may well be similar to the annual input of autochthonous primary production plus that from allochthonous tree cover.
Resumo:
There is no evidence of an increase in the acidity (lower pH or alkalinity) of water-bodies in the Lake District over the last 50 years. Brown trout occur in acid streams and upland tarns where pH is 4.5-5.2 throughout the year. Their occurrence in such waters in Britain and Ireland has been known for most of this century and there is no previous evidence of harmful effects on salmonid fisheries, though numbers of fish are naturally low. However, many benthic invertebrates that are common in hill-streams where pH is above 5.7 do not occur in more acid streams. This phenomenon occurs in the headwaters of several western rivers in Cumbria. It is not a recent response to "acid rain". Harmful effects of pH are undoubtedly more pronounced in waters that are poor in other dissolved ions. Low concentrations of sodium, potassium, calcium and chloride are especially important and may limit the distributions of some aquatic animals even where pH is above 5.7. The concentration of sulphate ions is usually relatively high but this is not important to the fauna; concentrations are at least two times higher in productive alkaline water-bodies than they are in unproductive acid waters.
Resumo:
High suspended sediment loads may be deleterious to adult salmonids and invertebrates in gravel-bedded streams. Further, the accumulation of fine material in the interstices of the gravel may have an adverse impact on the recruitment of the young stages of salmonids. It is important therefore not only to quantify the rates and degrees of silting but also to identify sediment sources and to determine both, the frequency of sediment inputs to the system and the duration of high sediment concentrations. This report explores the application of variance spectrum analysis to the isolation of sediment periodicities. For the particular river chosen for examination the method demonstrated the essentially undisturbed nature of the catchment. The regulated river chosen for examination is the River Tees in Northern England. Variance spectrum analysis was applied to a series of over 4000 paired daily turbidity and discharge readings.
Resumo:
This report covers the period April to September, 1989. During this period sampling of invertebrates has concentrated on planktonic animals and those associated with one of the dominant macrophytes in the system, Nuphar lutea, the yellow water lily, since these are particularly important in the diets of larval and juvenile cyprinid fish. A proportion of samples has been partly analysed and some preliminary data are presented here.
Resumo:
Organic contaminants are readily bioaccumulated by aquatic organisms. Exposure to and toxic effects of contaminants can be measured in terms of the biochemical responses of the organisms (i.e. molecular biomarkers). The hepatic biotransformation enzyme cytochrome P4501A (CYP1A) in vertebrates is specifically induced by organic contaminants such as aromatic hydrocarbons, PCBs and dioxins, and is involved in chemical carcinogenesis via catalysis of the covalent binding of organic contaminants to DNA (DNA-adducts). Hepatic CYP1A induction has been used extensively and successfully as a biomarker of organic contaminant exposure in fish. Fewer but equally encouraging studies in fish have used hepatic bulky, hydrophobic DNA-adducts as biomarkers of organic contaminant damage. Much less is known of the situation in marine invertebrates, but a CYPlA-like enzyme with limited inducibility and some potential for biomarker application is indicated. Stimulation of reactive oxygen species (ROS) production is another potential mechanism of organic contaminant-mediated DNA and other damage in aquatic organisms. A combination of antioxidant (enzymes, scavengers) and pro-oxidant (oxidised DNA bases, lipid peroxidation) measurements may have potential as a biomarker of organic contaminant exposure (particularly those chemicals which do not induce CYP1A) and/or oxidative stress, but more studies are required. Both CYP1A- and ROS-mediated toxicity are indicated to result in higher order deleterious effects, including cancer and other aspects of animal fitness.
Resumo:
In drinking water distribution systems, three groups of living organisms are usually found in the biofilm and circulating water: heterotrophic bacteria, free-living protozoa, and macro-invertebrates. Indirect evidence suggests that protozoa grazing in distribution systems can partially eliminate biomass production and accidental microbiological pollution. This paper examines the biodiversit in drinking water distribution systems.
Resumo:
This thesis deals with the oligochaete taxa (Annelida, Clitellata) from several karst units in the Cantabrian region, northern Iberian Peninsula. Groundwater oligochaetes are still poorly known fauna and the area seems to be a promising hotspot for groundwater taxa. Metodology is based on both morphological and molecular analyses. More than 7,000 specimens were collected from five karst units and >60 taxa were identified. Stygobiont oligochaete fauna in the northern Iberian Peninsula is diverse and mostly endemic (range areas <300 km). Three new stygogiont oligochaete species are described: Gianius navarroi Rodriguez & Achurra, 2010, Isochaetides gianii Rodriguez & Achurra, 2010 and Troglodrilus jugeti Achurra et al., 2012; and another four new taxa will be described in the near future. Taxonomic remarks on Lophochaeta ignota Stolc, 1886 and Troglodrilus galarzai (Giani & Rodriguez, 1988) are provided. The controversial separation of L. ignota and Heterochaeta costata Claparède, 1863 from Tubifex Lamarck, 1816 is corroborated by mitochondrial molecular data. Following the DNA barcoding method, individuals of the stygoxene species Stylodrilus heringianus Claparède, 1862 from different geographic areas are shown to represent a single metapopulation. The first phylogenetic analysis of the subfamily Tubificinae based on molecular data is attemped, which although incompletely resolved, evidences for the first time a close relationship between a stygobiont oligochaete (Troglodrilus Juget et al. 2006) and an estuarine especies (Heterochaeta costata Claparéde, 1863). A marine ancestor is hypothesised for Troglodrilus. Finally, Ereñozar karst unit (Biscay) is suggested to be a hotspot for groundwater oligochaetes (11 stygobiont taxa, of which 4 are endemic to the karst unit) and several biodiversity indices (Species richness, Rarity, Vulnerability and Complementarity) are shown to be useful tools for conservation management of groundwater habitats in that karst area.
Resumo:
Geology is the science that studies the Earth, its composition, structure and origin in addition to past and present phenomena that leave their mark on rocks. So why does society need geologists? Some of the main reasons are listed below: - Geologists compile and interpret information about the earth’s surface and subsoil, which allows us to establish the planet’s past history, any foreseeable changes and its relationship with the rest of the solar system. - Society needs natural resources (metals, non-metals, water and fossil fuels) to survive. The work of geologists is therefore a key part of finding new deposits and establishing a guide for exploring and managing resources in an environmentally-friendly way. - The creation of geological maps allows us to identify potential risk areas and survey different land uses; in other words, they make an essential contribution to land planning and proposing sustainable development strategies in a region. - Learning about Geology and the proper use of geological information contributes to saving lives and reducing financial loss caused by natural catastrophes such as earthquakes, tsunamis, volcanic eruptions, flooding and landslides, while also helping to develop construction projects, public works, etc. Through the proposed activities we aim to explain some of the basic elements of the different specialities within the field of Geological Sciences. In order to do this, four sessions have been organised that will allow for a quick insight into the fields of Palaeontology, Mineralogy, Petrology and Tectonics.
Resumo:
Geology is the science that studies the Earth, its composition, structure and origin in addition to past and present phenomena that leave their mark on rocks. So why does society need geologists? Some of the main reasons are listed below: - Geologists compile and interpret information about the earth’s surface and subsoil, which allows us to establish the planet’s past history, any foreseeable changes and its relationship with the rest of the solar system. - Society needs natural resources (metals, non-metals, water and fossil fuels) to survive. The work of geologists is therefore a key part of finding new deposits and establishing a guide for exploring and managing resources in an environmentally-friendly way. - The creation of geological maps allows us to identify potential risk areas and survey different land uses; in other words, they make an essential contribution to land planning and proposing sustainable development strategies in a region. - Learning about Geology and the proper use of geological information contributes to saving lives and reducing financial loss caused by natural catastrophes such as earthquakes, tsunamis, volcanic eruptions, flooding and landslides, while also helping to develop construction projects, public works, etc. Through the proposed activities we aim to explain some of the basic elements of the different specialities within the field of Geological Sciences. In order to do this, four sessions have been organised that will allow for a quick insight into the fields of Palaeontology, Mineralogy, Petrology and Tectonics.
Resumo:
The Kemp's ridley turtle (Lepidochelys kempii) is an endangered species whose recovery depends in part on the identification and protection of required habitats. We used radio and sonic telemetry on subadult Kemp's ridley turtles to investigate home-range size and habitat use in the coastal waters of west-central Florida from 1994 to 1996. We tracked 9 turtles during May-August up to 70 days after release and fou.ld they occupied 5-30 km2 foraging ranges. Compositional analyses indicated that turtles used rock outcroppings in their foraging ranges at a significantly higher proportion than expected. based on availability within the study area. Additionally. turtles used live bottom (e.g .• sessile invertebrates) and green macroalgae habitats significantly more than seagrass habitat. Similar studies are needed through'mt the Kemp's ridley turtles' range to investigate regional and stage-specific differences in habitat use. which can then be used to conserve important foraging areas.
Resumo:
Enzyme-catalyzed production of biodiesel is the object of extensive research due to the global shortage of fossil fuels and increased environmental concerns. Herein we report the preparation and main characteristics of a novel biocatalyst consisting of Cross-Linked Enzyme Aggregates (CLEAs) of Candida antarctica lipase B (CALB) which are covalently bound to magnetic nanoparticles, and tackle its use for the synthesis of biodiesel from non-edible vegetable and waste frying oils. For this purpose, insolubilized CALB was covalently cross-linked to magnetic nanoparticles of magnetite which the surface was functionalized with –NH2 groups. The resulting biocatalyst combines the relevant catalytic properties of CLEAs (as great stability and feasibility for their reutilization) and the magnetic character, and thus the final product (mCLEAs) are superparamagnetic particles of a robust catalyst which is more stable than the free enzyme, easily recoverable from the reaction medium and reusable for new catalytic cycles. We have studied the main properties of this biocatalyst and we have assessed its utility to catalyze transesterification reactions to obtain biodiesel from non-edible vegetable oils including unrefined soybean, jatropha and cameline, as well as waste frying oil. Using 1% mCLEAs (w/w of oil) conversions near 80% were routinely obtained at 30°C after 24 h of reaction, this value rising to 92% after 72 h. Moreover, the magnetic biocatalyst can be easily recovered from the reaction mixture and reused for at least ten consecutive cycles of 24 h without apparent loss of activity. The obtained results suggest that mCLEAs prepared from CALB can become a powerful biocatalyst for application at industrial scale with better performance than those currently available.
Resumo:
Os Aulopiformes são peixes marinhos com amplitude temporal do Eocretáceo ao Recente. Os táxons fósseis são encontrados em depósitos sedimentares das Américas do Sul e do Norte, Europa, Ásia e África. Os representantes viventes podem ser encontrados desde águas rasas costeiras, estuários, até profundidades abissais, excedendo 3.000 m. Os limites do grupo, suas intra e inter-relações são objeto de muitos estudos. O objetivo central desta tese é aplicar métodos de Biogeografia Histórica como Panbiogeografia e a Análise de Parcimônia de Endemismos aos peixes Aulopiformes. Adicionalmente, foi realizada a análise filogenética dos Aulopiformes. Como resultado foram obtidos: 21 traços generalizados de Synodontoidei, 28 de Chlorophthalmoidei, 3 de Giganturoidei e 7 de Enchodontoidei. O clado Synodontoidei apresenta um padrão de distribuição primordialmente em águas tropicais e subtropicais, associado à borda de placas tectônicas e ao tipo de substrato. O clado Chlorophthalmoidei apresenta padrões de distribuição associados a cadeias de montanhas submarinas e corais de profundidade. O clado Giganturoidei possui uma distribuição vicariante com a família Giganturidae ocupando águas mais quentes e Bathysauridae as regiões mais frias. O clado Enchodontoidei foi associado a recifes de coral e zonas de ressurgência pretéritos. Adicionalmente, foi analisada uma matriz de dados com 84 táxons e 105 caracteres morfológicos não ordenados e sem pesagem a priori. Como resultado foram obtidas sete árvores igualmente parcimoniosas com 1214 passos, índice de consistência de 0,1129 e índice de retenção de 0,4970. A ordem Aulopiformes não constituiu um grupo monofilético, com as famílias Chlorophthalmidae, Notosudidae, Synodontidae, Paraulopidae, Pseudotrichonotidae e Ipnopidae mais proximamente relacionados ao Myctophidea que aos Alepisauroidei. Assim a partir da combinação dos resultados alcançados conclui-se que a Biogeografia Histórica funcionou como uma ferramenta na identificação dos problemas taxonômicos dos Aulopiformes e a sua análise filogenética permitiu identificar controvérsias sistemáticas, indicando que são necessários maiores estudos sobre a anatomia dos aulopiformes, a fim de esclarecer suas inter-relações.