941 resultados para Interleukin-18BP
Resumo:
Infection is a leading cause of neonatal morbidity and mortality worldwide. Premature neonates are particularly susceptible to infection because of physiologic immaturity, comorbidity, and extraneous medical interventions. Additionally premature infants are at higher risk of progression to sepsis or severe sepsis, adverse outcomes, and antimicrobial toxicity. Currently initial diagnosis is based upon clinical suspicion accompanied by nonspecific clinical signs and is confirmed upon positive microbiologic culture results several days after institution of empiric therapy. There exists a significant need for rapid, objective, in vitro tests for diagnosis of infection in neonates who are experiencing clinical instability. We used immunoassays multiplexed on microarrays to identify differentially expressed serum proteins in clinically infected and non-infected neonates. Immunoassay arrays were effective for measurement of more than 100 cytokines in small volumes of serum available from neonates. Our analyses revealed significant alterations in levels of eight serum proteins in infected neonates that are associated with inflammation, coagulation, and fibrinolysis. Specifically P- and E-selectins, interleukin 2 soluble receptor alpha, interleukin 18, neutrophil elastase, urokinase plasminogen activator and its cognate receptor, and C-reactive protein were observed at statistically significant increased levels. Multivariate classifiers based on combinations of serum analytes exhibited better diagnostic specificity and sensitivity than single analytes. Multiplexed immunoassays of serum cytokines may have clinical utility as an adjunct for rapid diagnosis of infection and differentiation of etiologic agent in neonates with clinical decompensation.
Resumo:
Animal models have been developed for the study of rickettsial pathogenesis. However, to understand what occurs during the natural route of rickettsial transmission via the tick bite, the role of tick saliva should be considered in these models. To address this, we analysed the role of tick saliva in the transmission of Rickettsia conorii (Rickettsiales: Rickettsiaceae) in a murine host by intradermally (i.d.) inoculating two groups of susceptible C3H/HeJ mice with this Rickettsia, and infesting one group with nymphal Rhipicephalus sanguineus sensu lato (Ixodida: Ixodidae) ticks. Quantification of bacterial loads and mRNA levels of interleukin-1β (IL-1β), IL-10 and NF-κB was performed in C3H/HeJ lung samples by real-time quantitative polymerase chain reaction (PCR) and real-time reverse transcriptase PCR, respectively. Lung histology was examined to evaluate the pathological manifestations of infection. No statistically significant difference in bacterial load in the lungs of mice was observed between these two groups; however, a statistically significant difference was observed in levels of IL-1β and NF-κB, both of which were higher in the group inoculated with rickettsiae but not infected with ticks. Lung histology in both groups of animals revealed infiltration of inflammatory cells. Overall, this study showed that i.d. inoculation of R. conorii caused infection in the lungs of C3H/HeJ mice and tick saliva inhibited proinflammatory effects.
Resumo:
Tese de doutoramento, Medicina (Imunologia Clínica), Universidade de Lisboa, Faculdade de Medicina, 2016
Resumo:
Recent changes in regulatory requirements and social views on animal testing have incremented the development of reliable alternative tests for predicting skin and ocular irritation potential of products based on new raw materials. In this regard, botanical ingredients used in cosmetic products are among those materials, and should be carefully reviewed concerning the potential presence of irritant constituents. In particular, cosmetic products used on the face, in vicinity of the eyes or that may come in contact with mucous membranes, should avoid botanical ingredients that contain, or are suspected to contain, such ingredients. In this study, we aimed to evaluate the effect of a new cosmetic ingredient, namely, coffee silverskin (CS), with an in vitro skin and ocular irritation assay using reconstructed human epidermis, EpiSkin™, and human corneal epithelial model, SkinEthics™ HCE, and an in vivo assay. Three different extracts of CS were evaluated. The histology of the models after extracts applications was analysed. The in vitro results demonstrated that extracts were not classified as irritant and the histological analyses proved that extracts did not affect both models structure. The content of caffeine, 5-hydroxymethyl furfural and chlorogenic acid was quantified after the epidermal assay. The in vivo test carried out with the most promising extract (hydroalcoholic) showed that, with respect to irritant effects, these extracts can be regarded as safe for topical application.
Resumo:
Introduction. This study aims to compare the molecular gene expression during ischemia reperfusion injury. Several surgical times were considered: in the beginning of the harvesting (T0), at the end of the cold ischemia period (T1), and after reperfusion (T2) and compared with graft dysfunction after liver transplant (OLT). Methods. We studied 54 patients undergoing OLT. Clinical, laboratory data, and histologic data (Suzuki classification) as well as the Survival Outcomes Following Liver Transplantation (SOFT) score were used and compared with the molecular gene expression of the following genes: Interleukin (IL)-1b, IL-6, tumor necrosis factor-a, perforin, E-selectin (SELE), Fas-ligand, granzyme B, heme oxygenase-1, and nitric oxide synthetase. Results. Fifteen patients presented with graft dysfunction according to SOFT criteria. No relevant data were obtained by comparing the variables graft dysfunction and histologic variables. We observed a statistically significant relation between SELE at T0 (P ¼ .013) and IL-1b at T0 (P ¼ .028) and early graft dysfunction. Conclusions. We conclude that several genetically determined proinflammatory expressions may play a critical role in the development of graft dysfunction after OLT.
Resumo:
Summary Secondary lymphoid organs are sites of antigen presentation, clonal expansion of B and lymphocytes, and affinity maturation of B lymphocytes. In the intestine, these immune functions occur mainly in Peyer's patches (PP). PP develop through the interplay of two main cell types, haematopoietic cells and meserichyrnal cells. One particular haematopoietic cell type was identified as the inductive cell type in the formation of both PP and lymph nodes and was therefore designated as lymphoid tissue inducer cell. For a successful PP organogenesis, the crucial molecular components involved in the crosstalk of inducer cells and their mesenchymal target cells are adhesion molecules, lymphotoxin (LT) family members, and cytokines. In particular, the interleukin 7 receptor (IL-7R) expressed on inducer cells is absolutely required. To investigate the contribution of the ligand for the IL-7R. the cytokine IL-7, in the process of PP formation, we analyzed double transgenic (TG) mice. These mice resulted from an interbreeding of an IL-7TG mouse strain where the transgene is under the control of the MHC class II promoter with a second transgenic mouse strain, which overexpresses a transactivator for MHC class II genes. Double TG offsprings revealed higher levels of IL-7 mRNA occuring earlier in embryogenesis. Consequently, double TG mice showed a striking phenotype with a 3- to 5-fold increase in PP numbers compared to single IL-7TG or control littermates. Analysis of embryonic double TG intestines demonstrated that the process of PP development was already elevated during development as early as the embryonic day 16.5. Importantly, inducer cells were significantly increased in numbers in these embryonic intestines. Furthermore, the expression of LT? mRNA, which at this early time point is exclusively expressed by inducer cells, was also increased in double TG animals. These data clearly indicate a direct influence of IL-7 on the expansion of lymphoid tissue inducer cells and on the availability of LT? leading to a higher frequency of developing PP in fetal life. Interestingly, in addition to an enhanced frequency of PP development, in double TG mice, three additional phenotypic differences were observed. i) Lymphocyte infiltration in various non-lymphoid organs, such as stomach, salivary gland, and liver. Subsequent analysis demonstrated that B lymphocytes were predominant within these tertiary lymphoid structures. ii) Ectopic lymph node-like structures containing both B and T lymphocytes were found near the inguinal lymph node. iii) Double TG mice had a severe bone resorption syndrome most likely as a consequence of the pro-osteoclastic effect of IL-7. Taken together, these results show that IL-7 plays a key role in the homeostasis of inducer cells, in the generation of PP in the gut, in the formation of ectopic lymphoid tissue, and in bone resorption. Résumé Les organes lymphoïdes secondaires sont les lieux de présentation des antigènes aux lymphocytes, permettant l'expansion des lymphocytes B et T et la maturation d'affinité des lymphocytes B. Dans l'intestin, ces fonctions immunitaires se déroulent dans les plaques de Peyer (PP). Ces plaques se développent grâce à l'interaction des cellules hématopoïétiques avec des cellules mésenchymales. Un type particulier de cellules hématopoïétiques a été identifié comme cellule inductrice dans la formation des PP et des ganglions lymphatiques et de ce fait a été désigné cellule inductrice des tissus lymphoïdes. Durant l'organogénèse des PP, les composants moléculaires cruciaux impliqués dans l'interaction des cellules inductrices et des cellules mésenchymales sont les molécules d'adhésion, les membres de la famille des lymphotoxines (LT) et les cytokines. En particulier, le récepteur de l'interleukine 7 (IL-7R) exprimé par les cellules inductrices est absolument nécessaire. Pour étudier le rôle du ligand de l'IL-7R, l'interleukine IL-7, dans la formation des PP, nous avons croisé une lignée de souris transgénique (TG) surexprimant IL-7 sous contrôle du promoteur MHC class Il avec une lignée de souris transgénique surexprimant un transactivateur des genes MHC class II. Les souris doubles TG présentent une concentration élevée d'ARNm de l'IL-7 durant l'embryogénèse, ce qui résulte en une augmentation du nombre de PP de 3 à 5 fois en comparaison aux souris ayant seul le transgène IL-7 et aux souris contrôles. L'analyse des intestins des souris doubles TG démontre que le processus de développement des PP était élevé dès le jour 16.5 du développement embryonnaire. L'augmentation du nombre des cellules inductrices dans ces intestins embryonnaires est signilicative. De plus l'expression de l'ARNm LT?, qui à ce stade précoce est exclusivement exprimé dans les cellules inductrices, est également augmenté dans les doubles TG. Ces résultats indiquent clairement une influence directe d'IL-7 sur l'expansion des cellules inductrices des tissues lymphoïdes et sur la synthèse de LT? induisant une augmentation des PP se développant durant la vie foetale. En plus du développement accru des PP dans les souris doubles TG, trois différences phénotypiques ont été observées. i) L'infiltration lymphocytaire dans différents organes non-lymphoïdes, comme l'estomac, les glandes salivaires et le foie. Des analyses complémentaires ont demontré que les lymphocytes B étaient prédominants dans ces structures lymphoïdes tertiaires. ii) Des structures de ganglions lymphatiques ectopiques contenant des lymphocytes B et T ont été trouvées près des ganglions lymphatiques inguinaux. iii) Les souris doubles TG présentent un syndrome de résorption osseuse sévère probablement dû à l'effet pro-osteoclaste d'IL-7. Globalement, ces résultats montrent que IL-7 joue un rôle clé dans l'homéostasie des cellules inductrices dans la génèse de PP de l'intestin, dans la formation des tissus lymphoïdes ectopiques et dans la résorption osseuse.
Resumo:
Asbestos exposure can result in serious and frequently lethal diseases, including malignant mesothelioma. The host sensor for asbestos-induced inflammation is the NLRP3 inflammasome and it is widely assumed that this complex is essential for asbestos-induced cancers. Here, we report that acute interleukin-1β production and recruitment of immune cells into peritoneal cavity were significantly decreased in the NLRP3-deficient mice after the administration of asbestos. However, NLRP3-deficient mice displayed a similar incidence of malignant mesothelioma and survival times as wild-type mice. Thus, early inflammatory reactions triggered by asbestos are NLRP3-dependent, but NLRP3 is not critical in the chronic development of asbestos-induced mesothelioma. Notably, in a two-stage carcinogenesis-induced papilloma model, NLRP3-deficient mice showed a resistance phenotype in two different strain backgrounds, suggesting a tumour-promoting role of NLRP3 in certain chemically-induced cancer types.
Resumo:
Vaniprevir (MK-7009) is a macrocyclic hepatitis C virus (HCV) nonstructural protein 3/4A protease inhibitor. The aim of the present phase II study was to examine virologic response rates with vaniprevir in combination with pegylated interferon alpha-2a (Peg-IFN-α-2a) plus ribavirin (RBV). In this double-blind, placebo-controlled, dose-ranging study, treatment-naïve patients with HCV genotype 1 infection (n = 94) were randomized to receive open-label Peg-IFN-α-2a (180 μg/week) and RBV (1,000-1,200 mg/day) in combination with blinded placebo or vaniprevir (300 mg twice-daily [BID], 600 mg BID, 600 mg once-daily [QD], or 800 mg QD) for 28 days, then open-label Peg-IFN-α-2a and RBV for an additional 44 weeks. The primary efficacy endpoint was rapid viral response (RVR), defined as undetectable plasma HCV RNA at week 4. Across all doses, vaniprevir was associated with a rapid two-phase decline in viral load, with HCV RNA levels approximately 3 log(10) IU/mL lower in vaniprevir-treated patients, compared to placebo recipients. Rates of RVR were significantly higher in each of the vaniprevir dose groups, compared to the control regimen (68.8%-83.3% versus 5.6%; P < 0.001 for all comparisons). There were numerically higher, but not statistically significant, early and sustained virologic response rates with vaniprevir, as compared to placebo. Resistance profile was predictable, with variants at R155 and D168 detected in a small number of patients. No relationship between interleukin-28B genotype and treatment outcomes was demonstrated in this study. The incidence of adverse events was generally comparable between vaniprevir and placebo recipients; however, vomiting appeared to be more common at higher vaniprevir doses. CONCLUSION: Vaniprevir is a potent HCV protease inhibitor with a predictable resistance profile and favorable safety profile that is suitable for QD or BID administration.
Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis.
Resumo:
RATIONALE: Lung injury leads to pulmonary inflammation and fibrosis through myeloid differentiation primary response gene 88 (MyD88) and the IL-1 receptor 1 (IL-1R1) signaling pathway. The molecular mechanisms by which lung injury triggers IL-1beta production, inflammation, and fibrosis remain poorly understood. OBJECTIVES: To determine if lung injury depends on the NALP3 inflammasome and if bleomycin (BLM)-induced lung injury triggers local production of uric acid, thereby activating the NALP3 inflammasome in the lung. Methods: Inflammation upon BLM administration was evaluated in vivo in inflammasome-deficient mice. Pulmonary uric acid accumulation, inflammation, and fibrosis were analyzed in mice treated with the inhibitor of uric acid synthesis or with uricase, which degrades uric acid. MEASUREMENTS AND MAIN RESULTS: Lung injury depends on the NALP3 inflammasome, which is triggered by uric acid locally produced in the lung upon BLM-induced DNA damage and degradation. Reduction of uric acid levels using the inhibitor of uric acid synthesis allopurinol or uricase leads to a decrease in BLM-induced IL-1beta production, lung inflammation, repair, and fibrosis. Local administration of exogenous uric acid crystals recapitulates lung inflammation and repair, which depend on the NALP3 inflammasome, MyD88, and IL-1R1 pathways and Toll-like receptor (TLR)2 and TLR4 for optimal inflammation but are independent of the IL-18 receptor. CONCLUSIONS: Uric acid released from injured cells constitutes a major endogenous danger signal that activates the NALP3 inflammasome, leading to IL-1beta production. Reducing uric acid tissue levels represents a novel therapeutic approach to control IL-1beta production and chronic inflammatory lung pathology.
Resumo:
Transplantation of insulin secreting cells is regarded as a possible treatment for type 1 diabetes. One major difficulty in this approach is, however, that the transplanted cells are exposed to the patient's inflammatory and autoimmune environment, which originally destroyed their own beta-cells. Therefore, even if a good source of insulin-secreting cells can be identified for transplantation therapy, these cells need to be protected against these destructive influences. The aim of this project was to evaluate, using a clonal mouse beta-cell line, whether genetic engineering of protective genes could be a viable option to allow these cells to survive when transplanted into autoimmune diabetic mice. We demonstrated that transfer of the Bcl-2 anti-apoptotic gene and of several genes specifically interfering with cytokines intracellular signalling pathways, greatly improved resistance of the cells to inflammatory stresses in vitro. We further showed that these modifications did not interfere with the capacity of these cells to correct hyperglycaemia for several months in syngeneic or allogeneic streptozocin-diabetic mice. However, these cells were not protected against autoimmune destruction when transplanted into type 1 diabetic NOD mice. This suggests that in addition to inflammatory attacks by cytokines, autoimmunity very efficiently kills the transplanted cells, indicating that multiple protective mechanisms are required for efficient transplantation of insulin-secreting cells to treat type 1 diabetes.
Resumo:
We have shown previously that a fetal sheep liver extract (FSLE) containing significant quantities of fetal ovine gamma globin chain (Hbgamma) and LPS injected into aged (>20 months) mice could reverse the altered polarization (increased IL-4 and IL-10 with decreased IL-2 and IFNgamma) in cytokine production seen from ConA stimulated lymphoid cells of those mice. The mechanism(s) behind this change in cytokine production were not previously investigated. We report below that aged mice show a >60% decline in numbers and suppressive function of both CD4(+)CD25(+)Foxp3(+) Treg and so-called Tr3 (CD4(+)TGFbeta(+)), and that their number/function is restored to levels seen in control (8-week-old) mice by FSLE. In addition, on a per cell basis, CD4(+)CD25(-)Treg from aged mice were >4-fold more effective in suppression of proliferation and IL-2 production from ConA-activated lymphoid cells of a pool of CD4(+)CD25(-)T cells from 8-week-old mice than similar cells from young animals, and this suppression by CD25(-)T cells was also ameliorated following FSLE treatment. Infusion of anti-TGFbeta and anti-IL-10 antibodies in vivo altered Treg development following FSLE treatment, and attenuated FSLE-induced alterations in cytokine production profiles.
Resumo:
Animal models of infective endocarditis (IE) induced by high-grade bacteremia revealed the pathogenic roles of Staphylococcus aureus surface adhesins and platelet aggregation in the infection process. In humans, however, S. aureus IE possibly occurs through repeated bouts of low-grade bacteremia from a colonized site or intravenous device. Here we used a rat model of IE induced by continuous low-grade bacteremia to explore further the contributions of S. aureus virulence factors to the initiation of IE. Rats with aortic vegetations were inoculated by continuous intravenous infusion (0.0017 ml/min over 10 h) with 10(6) CFU of Lactococcus lactis pIL253 or a recombinant L. lactis strain expressing an individual S. aureus surface protein (ClfA, FnbpA, BCD, or SdrE) conferring a particular adhesive or platelet aggregation property. Vegetation infection was assessed 24 h later. Plasma was collected at 0, 2, and 6 h postinoculation to quantify the expression of tumor necrosis factor (TNF), interleukin 1α (IL-1α), IL-1β, IL-6, and IL-10. The percentage of vegetation infection relative to that with strain pIL253 (11%) increased when binding to fibrinogen was conferred on L. lactis (ClfA strain) (52%; P = 0.007) and increased further with adhesion to fibronectin (FnbpA strain) (75%; P < 0.001). Expression of fibronectin binding alone was not sufficient to induce IE (BCD strain) (10% of infection). Platelet aggregation increased the risk of vegetation infection (SdrE strain) (30%). Conferring adhesion to fibrinogen and fibronectin favored IL-1β and IL-6 production. Our results, with a model of IE induced by low-grade bacteremia, resembling human disease, extend the essential role of fibrinogen binding in the initiation of S. aureus IE. Triggering of platelet aggregation or an inflammatory response may contribute to or promote the development of IE.
Resumo:
An acute attack of gout is a paradigm of acute sterile inflammation, as opposed to pyogenic inflammation. Recent studies suggest that the triggering of IL-1beta release from leucocytes lies at the heart of a cascade of processes that involves multiple cytokines and mediators. The NLRP3 inflammasome appears to have a specific role in this regard, but the biochemical events leading to its activation are still not well understood. We review the known mechanisms that underlie the inflammatory process triggered by urate crystals and suggest areas that require further research.
Resumo:
Activation of dendritic cells (DC) by microbial products via Toll-like receptors (TLR) is instrumental in the induction of immunity. In particular, TLR signaling plays a major role in the instruction of Th1 responses. The development of Th2 responses has been proposed to be independent of the adapter molecule myeloid differentiation factor 88 (MyD88) involved in signal transduction by TLRs. In this study we show that flagellin, the bacterial stimulus for TLR5, drives MyD88-dependent Th2-type immunity in mice. Flagellin promotes the secretion of IL-4 and IL-13 by Ag-specific CD4(+) T cells as well as IgG1 responses. The Th2-biased responses are associated with the maturation of DCs, which are shown to express TLR5. Flagellin-mediated DC activation requires MyD88 and induces NF-kappaB-dependent transcription and the production of low levels of proinflammatory cytokines. In addition, the flagellin-specific response is characterized by the lack of secretion of the Th1-promoting cytokine IL-12 p70. In conclusion, this study suggests that flagellin and, more generally, TLR ligands can control Th2 responses in a MyD88-dependent manner.