872 resultados para Interior and Environmental Design
Resumo:
Green supply chain management and environmental and ethical behaviour (EEB), a major component of corporate responsibility (CR), are rapidly developing fields in research and practice. The influence and effect of EEB at the functional level, however, is under-researched. Similarly, the management of risk in the supply chain has become a practical concern for many firms. It is important that managers have a good understanding of the risks associated with supplier partnerships. This paper examines the effect of firms’ investment in EEB as part of corporate social responsibility in mediating the relationship between supply chain partnership (SCP) and management appreciation of the risk of partnering. We hypothesise that simply entering into a SCP does not facilitate an appreciation of the risk of partnering and may even hamper such awareness. However, such an appreciation of the risk is facilitated through CR’s environmental and stakeholder management ethos. The study contributes further by separating risk into distinct relational and performance components. The results of a firm-level survey confirm the mediation effect, highlighting the value to supply chain strategy and design of investing in EEB on three fronts: building internal awareness, monitoring and sharing best practice.
Resumo:
Faculty from Rhode Island School of Design representing Interior Architecture, Industrial Design, and Textiles detail their thoughtful interactions with materials.
Resumo:
Designers respond to issues and synthesize ideas from throughout the day as voices from the field who directly encounter the need for recently graduated students to possess the ability to investigate and interrogate materials.
Resumo:
Educators representing interactions with materials speak to critical approaches, life-cycle concerns, critical thinking of composition/process/properties.
Resumo:
This study presents an environmental oil spill sensitivity map of Cardoso Island State Park, located in São Paulo state, Brazil, including some of its surrounding areas. This map was designed following the procedures determined by the Brazilian Federal Environment Organ (Ministry of the Environment), which separates coastal habitats in different littoral sensitivity indexes (LSI) to oil spills. We have also analysed some seasonal variations in morphologic and textural parameters at the local marine beaches that could affect their sensitivity, having found that they are more sensitive during summer due to a wider foreshore zone during these periods. Local most sensitive habitats are estuarine mangroves (LSI 10) and estuarine mud banks (LSI 9). Marine beaches were ranked LSI 3, and littoral rocky shores were subdivided in exposed flat rocky shores (LSI 1), boulder rocky shores (LSI 6) and sheltered rocky shores (LSI 8). Due to the elevated sensitivity of an estuarine system in the area, we considered necessary the installation of an Environmental Emergency Centre and the design of an emergency plan for the region in case of an accident resulting in oil spills within its vicinities. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The effects of the dietary substitution of dry corn by high-moisture corn grain silage (HMCGS) were evaluated on the performance, nutrient digestibility and serum biochemical parameters of broilers reared in an alternative production system and submitted to different environmental temperatures. A total of 288 one-day-old male Cobb chicks were distributed according to a randomized block design in a 3x4 factorial arrangement: three environmental temperatures (hot, thermoneutral or cold) and four levels of HMCGS in substitution of dry corn (0%, 20%, 40% or 60%). The acid analysis showed that the evaluated HMCGS contained average percentage values of ethanol, lactic acid, and acetic acid (expressed in 100% of dry matter) of 0.7690, 2.7320 and 0.0249%, respectively. Propionic and butyric acids were not detected. Dry corn and HMCGS presented pH values of 5.8 and 3.3, respectively. The inclusion of HMCGS reduced dietary pH, as shown by the values of 5.7, 5.4, 5.1 and 4.8 recorded for the diets containing 0%, 20%, 40% and 60% of HMCGS, respectively. There was no significant interaction between diets and environmental temperature. HMCGS may replace up to 40% dry corn in broiler diets when performance, triglyceride levels, and HDL-cholesterol ratio is considered, and up to 60% when nutrient digestibility is evaluated. High environmental temperature impairs broiler performance, nutrient digestibility, and serum biochemistry, demonstrating the influence of environmental temperature on broiler metabolism and performance.
Resumo:
The aim of this Ph.D. project has been the design and characterization of new and more efficient luminescent tools, in particular sensors and labels, for analytical chemistry, medical diagnostics and imaging. Actually both the increasing temporal and spatial resolutions that are demanded by those branches, coupled to a sensitivity that is required to reach the single molecule resolution, can be provided by the wide range of techniques based on luminescence spectroscopy. As far as the development of new chemical sensors is concerned, as chemists we were interested in the preparation of new, efficient, sensing materials. In this context, we kept developing new molecular chemosensors, by exploiting the supramolecular approach, for different classes of analytes. In particular we studied a family of luminescent tetrapodal-hosts based on aminopyridinium units with pyrenyl groups for the detection of anions. These systems exhibited noticeable changes in the photophysical properties, depending on the nature of the anion; in particular, addition of chloride resulted in a conformational change, giving an initial increase in excimeric emission. A good selectivity for dicarboxylic acid was also found. In the search for higher sensitivities, we moved our attention also to systems able to perform amplification effects. In this context we described the metal ion binding properties of three photoactive poly-(arylene ethynylene) co-polymers with different complexing units and we highlighted, for one of them, a ten-fold amplification of the response in case of addition of Zn2+, Cu2+ and Hg2+ ions. In addition, we were able to demonstrate the formation of complexes with Yb3+ an Er3+ and an efficient sensitization of their typical metal centered NIR emission upon excitation of the polymer structure, this feature being of particular interest for their possible applications in optical imaging and in optical amplification for telecommunication purposes. An amplification effect was also observed during this research in silica nanoparticles derivatized with a suitable zinc probe. In this case we were able to prove, for the first time, that nanoparticles can work as “off-on” chemosensors with signal amplification. Fluorescent silica nanoparticles can be thus seen as innovative multicomponent systems in which the organization of photophysically active units gives rise to fruitful collective effects. These precious effects can be exploited for biological imaging, medical diagnostic and therapeutics, as evidenced also by some results reported in this thesis. In particular, the observed amplification effect has been obtained thanks to a suitable organization of molecular probe units onto the surface of the nanoparticles. In the effort of reaching a deeper inside in the mechanisms which lead to the final amplification effects, we also attempted to find a correlation between the synthetic route and the final organization of the active molecules in the silica network, and thus with those mutual interactions between one another which result in the emerging, collective behavior, responsible for the desired signal amplification. In this context, we firstly investigated the process of formation of silica nanoparticles doped with pyrene derivative and we showed that the dyes are not uniformly dispersed inside the silica matrix; thus, core-shell structures can be formed spontaneously in a one step synthesis. Moreover, as far as the design of new labels is concerned, we reported a new synthetic approach to obtain a class of robust, biocompatible silica core-shell nanoparticles able to show a long-term stability. Taking advantage of this new approach we also showed the synthesis and photophysical properties of core-shell NIR absorbing and emitting materials that proved to be very valuable for in-vivo imaging. In general, the dye doped silica nanoparticles prepared in the framework of this project can conjugate unique properties, such as a very high brightness, due to the possibility to include many fluorophores per nanoparticle, high stability, because of the shielding effect of the silica matrix, and, to date, no toxicity, with a simple and low-cost preparation. All these features make these nanostructures suitable to reach the low detection limits that are nowadays required for effective clinical and environmental applications, fulfilling in this way the initial expectations of this research project.
Resumo:
Exposure to farming environments has been shown to protect substantially against asthma and atopic disease across Europe and in other parts of the world. The GABRIEL Advanced Surveys (GABRIELA) were conducted to determine factors in farming environments which are fundamental to protecting against asthma and atopic disease. The GABRIEL Advanced Surveys have a multi-phase stratified design. In a first-screening phase, a comprehensive population-based survey was conducted to assess the prevalence of exposure to farming environments and of asthma and atopic diseases (n = 103,219). The second phase was designed to ascertain detailed exposure to farming environments and to collect biomaterial and environmental samples in a stratified random sample of phase 1 participants (n = 15,255). A third phase was carried out in a further stratified sample only in Bavaria, southern Germany, aiming at in-depth respiratory disease and exposure assessment including extensive environmental sampling (n = 895). Participation rates in phase 1 were around 60% but only about half of the participating study population consented to further study modules in phase 2. We found that consenting behaviour was related to familial allergies, high parental education, wheeze, doctor diagnosed asthma and rhinoconjunctivitis, and to a lesser extent to exposure to farming environments. The association of exposure to farm environments with asthma or rhinoconjunctivitis was not biased by participation or consenting behaviour. The GABRIEL Advanced Surveys are one of the largest studies to shed light on the protective 'farm effect' on asthma and atopic disease. Bias with regard to the main study question was able to be ruled out by representativeness and high participation rates in phases 2 and 3. The GABRIEL Advanced Surveys have created extensive collections of questionnaire data, biomaterial and environmental samples promising new insights into this area of research.
Resumo:
Petroleum supply and environmental pollution issues constantly increase interest in renewable low polluting alternative fuels. Published test results show decreased pollution with similar power output and fuel consumption from Internal Combustion Engines (ICE) burning alternative fuels. More specifically, diesel engines burning biodiesel derived from plant oils and animal fats not only reduce harmful exhaust emissions but are renewable and environmentally friendly. To validate these claims and assess the feasibility of alternative fuels, independent engine dynamometer and emissions testing was performed. A testing apparatus capable of making relevant measurements was designed, built, and used to test and determine the feasibility of biodiesel. The apparatus marks the addition of a valuable testing tool to the University and provides a foundation for future experiments. This thesis will discuss the background of biodiesel, testing methods, design and function of the testing apparatus, experimental results, relevant calculations, and conclusions.
Resumo:
Large parts of the world are subjected to one or more natural hazards, such as earthquakes, tsunamis, landslides, tropical storms (hurricanes, cyclones and typhoons), costal inundation and flooding. Virtually the entire world is at risk of man-made hazards. In recent decades, rapid population growth and economic development in hazard-prone areas have greatly increased the potential of multiple hazards to cause damage and destruction of buildings, bridges, power plants, and other infrastructure; thus posing a grave danger to the community and disruption of economic and societal activities. Although an individual hazard is significant in many parts of the United States (U.S.), in certain areas more than one hazard may pose a threat to the constructed environment. In such areas, structural design and construction practices should address multiple hazards in an integrated manner to achieve structural performance that is consistent with owner expectations and general societal objectives. The growing interest and importance of multiple-hazard engineering has been recognized recently. This has spurred the evolution of multiple-hazard risk-assessment frameworks and development of design approaches which have paved way for future research towards sustainable construction of new and improved structures and retrofitting of the existing structures. This report provides a review of literature and the current state of practice for assessment, design and mitigation of the impact of multiple hazards on structural infrastructure. It also presents an overview of future research needs related to multiple-hazard performance of constructed facilities.
Resumo:
This report provides an analysis of the thermal performance and emissions characteristics of improved biomass stoves constructed using earthen materials. Commonly referred to as mud stoves, this type of improved stove incorporates high clay content soil with an organic binder in the construction of its combustion chamber and body. When large quantities of the mud material are used to construct the stove body, the stove does not offer significant improvements in fuel economy or air quality relative to traditional open fire cooking. This is partly because a significant amount of heat is absorbed by the mass of the stove reducing combustion efficiency and heat transfer to the cook pot. An analysis of the thermal and mechanical properties of stove materials was also performed. A material mixture containing a one‐to‐one ratio by volume of high content clay soil and straw was found to have thermal properties comparable to fired ceramics used in more advanced improved stove designs. Feedback from mud stove users in Mauritania and Mali, West Africa was also collected during implementation. Suggestions for stove design improvements were developed based on this information and the data collected in the performance, emissions, and material properties analysis. Design suggestions include reducing stove height to accommodate user cooking preferences and limiting overall stove mass to reduce heat loss to the stove body.