888 resultados para Interfaces gráficas
Resumo:
For people with intellectual disabilities there are significant barriers to inclusion in socially cooperative endeavours. This paper investigates the effectiveness of Stomp, a tangible user interface (TUI) designed to provide new participatory experiences for people with intellectual disability. Results from an observational study reveal the extent to which the Stomp system supports social and physical interaction. The tangible, spatial and embodied qualities of Stomp result in an experience that does not rely on the acquisition of specific competencies before interaction and engagement can occur.
Resumo:
Virtual environments can provide, through digital games and online social interfaces, extremely exciting forms of interactive entertainment. Because of their capability in displaying and manipulating information in natural and intuitive ways, such environments have found extensive applications in decision support, education and training in the health and science domains amongst others. Currently, the burden of validating both the interactive functionality and visual consistency of a virtual environment content is entirely carried out by developers and play-testers. While considerable research has been conducted in assisting the design of virtual world content and mechanics, to date, only limited contributions have been made regarding the automatic testing of the underpinning graphics software and hardware. The aim of this thesis is to determine whether the correctness of the images generated by a virtual environment can be quantitatively defined, and automatically measured, in order to facilitate the validation of the content. In an attempt to provide an environment-independent definition of visual consistency, a number of classification approaches were developed. First, a novel model-based object description was proposed in order to enable reasoning about the color and geometry change of virtual entities during a play-session. From such an analysis, two view-based connectionist approaches were developed to map from geometry and color spaces to a single, environment-independent, geometric transformation space; we used such a mapping to predict the correct visualization of the scene. Finally, an appearance-based aliasing detector was developed to show how incorrectness too, can be quantified for debugging purposes. Since computer games heavily rely on the use of highly complex and interactive virtual worlds, they provide an excellent test bed against which to develop, calibrate and validate our techniques. Experiments were conducted on a game engine and other virtual worlds prototypes to determine the applicability and effectiveness of our algorithms. The results show that quantifying visual correctness in virtual scenes is a feasible enterprise, and that effective automatic bug detection can be performed through the techniques we have developed. We expect these techniques to find application in large 3D games and virtual world studios that require a scalable solution to testing their virtual world software and digital content.
Resumo:
Video is commonly used as a method for recording embodied interaction for purposes of analysis and design and has been proposed as a useful ‘material’ for interaction designers to engage with. But video is not a straight forward reproduction of embodied activity – in themselves video recordings ‘flatten’ the space of embodied interaction, they impose a perspective on unfolding action, and remove the embodied spatial and social context within which embodied interaction unfolds. This does not mean that video is not a useful medium with which to engage as part of a process of investigating and designing for embodied interaction – but crucially, it requires that as people attempting to engage with video, designers own bodies and bodily understandings must be engaged with and brought into play. This paper describes and reflects upon our experiences of engaging with video in two different activities as part of a larger research project investigating the design of gestural interfaces for a dental surgery context.
Resumo:
Companies and their services are being increasingly exposed to global business networks and Internet-based ondemand services. Much of the focus is on flexible orchestration and consumption of services, beyond ownership and operational boundaries of services. However, ways in which third-parties in the “global village” can seamlessly self-create new offers out of existing services remains open. This paper proposes a framework for service provisioning in global business networks that allows an open-ended set of techniques for extending services through a rich, multi-tooling environment. The Service Provisioning Management Framework, as such, supports different modeling techniques, through supportive tools, allowing different parts of services to be integrated into new contexts. Integration of service user interfaces, business processes, operational interfaces and business object are supported. The integration specifications that arise from service extensions are uniformly reflected through a kernel technique, the Service Integration Technique. Thus, the framework preserves coherence of service provisioning tasks without constraining the modeling techniques needed for extending different aspects of services.
Resumo:
Cities accumulate and distribute vast sets of digital information. Many decision-making and planning processes in councils, local governments and organisations are based on both real-time and historical data. Until recently, only a small, carefully selected subset of this information has been released to the public – usually for specific purposes (e.g. train timetables, release of planning application through websites to name just a few). This situation is however changing rapidly. Regulatory frameworks, such as the Freedom of Information Legislation in the US, the UK, the European Union and many other countries guarantee public access to data held by the state. One of the results of this legislation and changing attitudes towards open data has been the widespread release of public information as part of recent Government 2.0 initiatives. This includes the creation of public data catalogues such as data.gov.au (U.S.), data.gov.uk (U.K.), data.gov.au (Australia) at federal government levels, and datasf.org (San Francisco) and data.london.gov.uk (London) at municipal levels. The release of this data has opened up the possibility of a wide range of future applications and services which are now the subject of intensified research efforts. Previous research endeavours have explored the creation of specialised tools to aid decision-making by urban citizens, councils and other stakeholders (Calabrese, Kloeckl & Ratti, 2008; Paulos, Honicky & Hooker, 2009). While these initiatives represent an important step towards open data, they too often result in mere collections of data repositories. Proprietary database formats and the lack of an open application programming interface (API) limit the full potential achievable by allowing these data sets to be cross-queried. Our research, presented in this paper, looks beyond the pure release of data. It is concerned with three essential questions: First, how can data from different sources be integrated into a consistent framework and made accessible? Second, how can ordinary citizens be supported in easily composing data from different sources in order to address their specific problems? Third, what are interfaces that make it easy for citizens to interact with data in an urban environment? How can data be accessed and collected?
Resumo:
The Social Web is a torrent of real-time information and an emerging discipline is now focussed on harnessing this information flow for analysis of themes, opinions and sentiment. This short paper reports on early work on designing better user interfaces for end users in manipulating the outcomes from these analysis engines.
Resumo:
The design of pre-contoured fracture fixation implants (plates and nails) that correctly fit the anatomy of a patient utilises 3D models of long bones with accurate geometric representation. 3D data is usually available from computed tomography (CT) scans of human cadavers that generally represent the above 60 year old age group. Thus, despite the fact that half of the seriously injured population comes from the 30 year age group and below, virtually no data exists from these younger age groups to inform the design of implants that optimally fit patients from these groups. Hence, relevant bone data from these age groups is required. The current gold standard for acquiring such data–CT–involves ionising radiation and cannot be used to scan healthy human volunteers. Magnetic resonance imaging (MRI) has been shown to be a potential alternative in the previous studies conducted using small bones (tarsal bones) and parts of the long bones. However, in order to use MRI effectively for 3D reconstruction of human long bones, further validations using long bones and appropriate reference standards are required. Accurate reconstruction of 3D models from CT or MRI data sets requires an accurate image segmentation method. Currently available sophisticated segmentation methods involve complex programming and mathematics that researchers are not trained to perform. Therefore, an accurate but relatively simple segmentation method is required for segmentation of CT and MRI data. Furthermore, some of the limitations of 1.5T MRI such as very long scanning times and poor contrast in articular regions can potentially be reduced by using higher field 3T MRI imaging. However, a quantification of the signal to noise ratio (SNR) gain at the bone - soft tissue interface should be performed; this is not reported in the literature. As MRI scanning of long bones has very long scanning times, the acquired images are more prone to motion artefacts due to random movements of the subject‟s limbs. One of the artefacts observed is the step artefact that is believed to occur from the random movements of the volunteer during a scan. This needs to be corrected before the models can be used for implant design. As the first aim, this study investigated two segmentation methods: intensity thresholding and Canny edge detection as accurate but simple segmentation methods for segmentation of MRI and CT data. The second aim was to investigate the usability of MRI as a radiation free imaging alternative to CT for reconstruction of 3D models of long bones. The third aim was to use 3T MRI to improve the poor contrast in articular regions and long scanning times of current MRI. The fourth and final aim was to minimise the step artefact using 3D modelling techniques. The segmentation methods were investigated using CT scans of five ovine femora. The single level thresholding was performed using a visually selected threshold level to segment the complete femur. For multilevel thresholding, multiple threshold levels calculated from the threshold selection method were used for the proximal, diaphyseal and distal regions of the femur. Canny edge detection was used by delineating the outer and inner contour of 2D images and then combining them to generate the 3D model. Models generated from these methods were compared to the reference standard generated using the mechanical contact scans of the denuded bone. The second aim was achieved using CT and MRI scans of five ovine femora and segmenting them using the multilevel threshold method. A surface geometric comparison was conducted between CT based, MRI based and reference models. To quantitatively compare the 1.5T images to the 3T MRI images, the right lower limbs of five healthy volunteers were scanned using scanners from the same manufacturer. The images obtained using the identical protocols were compared by means of SNR and contrast to noise ratio (CNR) of muscle, bone marrow and bone. In order to correct the step artefact in the final 3D models, the step was simulated in five ovine femora scanned with a 3T MRI scanner. The step was corrected using the iterative closest point (ICP) algorithm based aligning method. The present study demonstrated that the multi-threshold approach in combination with the threshold selection method can generate 3D models from long bones with an average deviation of 0.18 mm. The same was 0.24 mm of the single threshold method. There was a significant statistical difference between the accuracy of models generated by the two methods. In comparison, the Canny edge detection method generated average deviation of 0.20 mm. MRI based models exhibited 0.23 mm average deviation in comparison to the 0.18 mm average deviation of CT based models. The differences were not statistically significant. 3T MRI improved the contrast in the bone–muscle interfaces of most anatomical regions of femora and tibiae, potentially improving the inaccuracies conferred by poor contrast of the articular regions. Using the robust ICP algorithm to align the 3D surfaces, the step artefact that occurred by the volunteer moving the leg was corrected, generating errors of 0.32 ± 0.02 mm when compared with the reference standard. The study concludes that magnetic resonance imaging, together with simple multilevel thresholding segmentation, is able to produce 3D models of long bones with accurate geometric representations. The method is, therefore, a potential alternative to the current gold standard CT imaging.
Resumo:
The study shows an alternative solution to existing efforts at solving the problem of how to centrally manage and synchronise users’ Multiple Profiles (MP) across multiple discrete social networks. Most social network users hold more than one social network account and utilise them in different ways depending on the digital context (Iannella, 2009a). They may, for example, enjoy friendly chat on Facebook1, professional discussion on LinkedIn2, and health information exchange on PatientsLikeMe3 In this thesis the researcher proposes a framework for the management of a user’s multiple online social network profiles. A demonstrator, called Multiple Profile Manager (MPM), will be showcased to illustrate how effective the framework will be. The MPM will achieve the required profile management and synchronisation using a free, open, decentralized social networking platform (OSW) that was proposed by the Vodafone Group in 2010. The proposed MPM will enable a user to create and manage an integrated profile (IP) and share/synchronise this profile with all their social networks. The necessary protocols to support the prototype are also proposed by the researcher. The MPM protocol specification defines an Extensible Messaging and Presence Protocol (XMPP) extension for sharing vCard and social network accounts information between the MPM Server, MPM Client, and social network sites (SNSs). . Therefore many web users need to manage disparate profiles across many distributed online sources. Maintaining these profiles is cumbersome, time-consuming, inefficient, and may lead to lost opportunity. The writer of this thesis adopted a research approach and a number of use cases for the implementation of the project. The use cases were created to capture the functional requirements of the MPM and to describe the interactions between users and the MPM. In the research a development process was followed in establishing the prototype and related protocols. The use cases were subsequently used to illustrate the prototype via the screenshots taken of the MPM client interfaces. The use cases also played a role in evaluating the outcomes of the research such as the framework, prototype, and the related protocols. An innovative application of this project is in the area of public health informatics. The researcher utilised the prototype to examine how the framework might benefit patients and physicians. The framework can greatly enhance health information management for patients and more importantly offer a more comprehensive personal health overview of patients to physicians. This will give a more complete picture of the patient’s background than is currently available and will prove helpful in providing the right treatment. The MPM prototype and related protocols have a high application value as they can be integrated into the real OSW platform and so serve users in the modern digital world. They also provide online users with a real platform for centrally storing their complete profile data, efficiently managing their personal information, and moreover, synchronising the overall complete profile with each of their discrete profiles stored in their different social network sites.
Resumo:
Identifying, modelling and documenting business processes usually requires the collaboration of many stakeholders that may be spread across companies in inter-organizational business settings. While there are many process modelling tools available, the support they provide for remote collaboration is still limited. This paper investigates the application of virtual environment and augmented reality technologies to remote business process modelling, with an aim to assisting common collaboration tasks by providing an increased sense of immersion in a shared workspace. We report on the evaluation of a prototype system with five key informants. The results indicate that this approach to business process modelling is suited to remote collaborative task settings, and stakeholders may indeed benefit from using augmented reality interfaces.
Resumo:
The pull-out force of some outer walls against other inner walls in multi-walled carbon nanotubes (MWCNTs) was systematically studied by molecular mechanics simulations. The obtained results reveal that the pull-out force is proportional to the square of the diameter of the immediate outer wall on the sliding interface, which highlights the primary contribution of the capped section of MWCNT to the pull-out force. A simple empirical formula was proposed based on the numerical results to predict the pull-out force for an arbitrary pull-out in a given MWCNT directly from the diameter of the immediate outer wall on the sliding interface. Moreover, tensile tests for MWCNTs with and without acid-treatment were performed with a nanomanipulator inside a vacuum chamber of a scanning electron microscope (SEM) to validate the present empirical formula. It was found that the theoretical pull-out forces agree with the present and some previous experimental results very well.
Resumo:
As multimedia-enabled mobile devices such as smart phones and tablets are becoming the day-to-day computing device of choice for users of all ages, everyone expects that all mobile multimedia applications and services should be as smooth and as high-quality as the desktop experience. The grand challenge in delivering multimedia to mobile devices using the Internet is to ensure the quality of experience that meets the users' expectations, within reasonable costs, while supporting heterogeneous platforms and wireless network conditions. This book aims to provide a holistic overview of the current and future technologies used for delivering high-quality mobile multimedia applications, while focusing on user experience as the key requirement. The book opens with a section dealing with the challenges in mobile video delivery as one of the most bandwidth-intensive media that requires smooth streaming and a user-centric strategy to ensure quality of experience. The second section addresses this challenge by introducing some important concepts for future mobile multimedia coding and the network technologies to deliver quality services. The last section combines the user and technology perspectives by demonstrating how user experience can be measured using case studies on urban community interfaces and Internet telephones.
Resumo:
The presence of air and bone interfaces makes the dose distribution for head and neck cancer treatments difficult to accurately predict. This study compared planning system dose calculations using the collapsed-cone convolution algorithm with EGSnrcMonte Carlo simulation results obtained using the Monte Carlo DICOMToolKit software, for one oropharynx, two paranasal sinus and three nodal treatment plans. The difference between median doses obtained from the treatment planning and Monte Carlo calculations was found to be greatest in two bilateral treatments: 4.8%for a retropharyngeal node irradiation and 6.7% for an ethmoid paranasal sinus treatment. These deviations in median dose were smaller for two unilateral treatments: 0.8% for an infraclavicular node irradiation and 2.8% for a cervical node treatment. Examination of isodose distributions indicated that the largest deviations between Monte Carlo simulation and collapsed-cone convolution calculations were seen in the bilateral treatments, where the increase in calculated dose beyond air cavities was most significant.
Resumo:
The ubiquity of multimodality in hypermedia environments is undeniable. Bezemer and Kress (2008) have argued that writing has been displaced by image as the central mode for representation. Given the current technical affordances of digital technology and user-friendly interfaces that enable the ease of multimodal design, the conspicuous absence of images in certain domains of cyberspace is deserving of critical analysis. In this presentation, I examine the politics of discourses implicit within hypertextual spaces, drawing textual examples from a higher education website. I critically examine the role of writing and other modes of production used in what Fairclough (1993) refers to as discourses of marketisation in higher education, tracing four pervasive discourses of teaching and learning in the current economy: i) materialization, ii) personalization, iii) technologisation, and iv) commodification (Fairclough, 1999). Each of these arguments is supported by the critical analysis of multimodal texts. The first is a podcast highlighting the new architectonic features of a university learning space. The second is a podcast and transcript of a university Open Day interview with prospective students. The third is a time-lapse video showing the construction of a new science and engineering precinct. These three multimodal texts contrast a final web-based text that exhibits a predominance of writing and the powerful absence or silencing of the image. I connect the weightiness of words and the function of monomodality in the commodification of discourses, and its resistance to the multimodal affordances of web-based technologies, and how this is used to establish particular sets of subject positions and ideologies through which readers are constrained to occupy. Applying principles of critical language study by theorists that include Fairclough, Kress, Lemke, and others whose semiotic analysis of texts focuses on the connections between language, power, and ideology, I demonstrate how the denial of image and the privileging of written words in the multimodality of cyberspace is an ideological effect to accentuate the dominance of the institution.