997 resultados para Interaction Potentials
Resumo:
We present a method to compute, assuming a continuous distribution of sources, the elementary potential created by a differential element of volume of matter, whose integral generates a known adsorption field V(z) for a planar surface. We show that this elementary potential is univocally determined by the original field and can be used to generate adsorption potentials for other nontrivial geometries. We illustrate the method for the Chizmeshya-Cole-Zaremba physisorption potential and discuss several examples and applications.
Resumo:
India is the largest producer and processor of cashew in the world. The export value of cashew is about Rupees 2600 crore during 2004-05. Kerala is the main processing and exporting center of cashew. In Kerala most of the cashew processing factories are located in Kollam district. The industry provides livelihood for about 6-7 lakhs of employees and farmers, the cashew industry has national importance. In Kollam district alone there are more than 2.5 lakhs employees directly involved in the industry, which comes about 10 per cent of the population of the district, out of which 95 per cent are women workers. It is a fact that any amount received by a woman worker will be utilized directly for the benefit of the family and hence the link relating to family welfare is quite clear. Even though the Government of Kerala has incorporated the Kerala State Cashew Development Corporation (KSCDC) and Kerala State Cashew Workers Apex Industrial Co—operative Society (CAPEX) to develop the Cashew industry, the cashew industry and ancillary industries did not grow as per the expectation. In this context, an attempt has been made to analyze the problems and potential of the industry so as to make the industry viable and sustainable for the perpetual employment and income generation as well as the overall development of the Kollam district.
Resumo:
In classical field theory, the ordinary potential V is an energy density for that state in which the field assumes the value ¢. In quantum field theory, the effective potential is the expectation value of the energy density for which the expectation value of the field is ¢o. As a result, if V has several local minima, it is only the absolute minimum that corresponds to the true ground state of the theory. Perturbation theory remains to this day the main analytical tool in the study of Quantum Field Theory. However, since perturbation theory is unable to uncover the whole rich structure of Quantum Field Theory, it is desirable to have some method which, on one hand, must go beyond both perturbation theory and classical approximation in the points where these fail, and at that time, be sufficiently simple that analytical calculations could be performed in its framework During the last decade a nonperturbative variational method called Gaussian effective potential, has been discussed widely together with several applications. This concept was described as a means of formalizing our intuitive understanding of zero-point fluctuation effects in quantum mechanics in a way that carries over directly to field theory.
Resumo:
The mean-field theory of a spin glass with a specific form of nearest- and next-nearest-neighbor interactions is investigated. Depending on the sign of the interaction matrix chosen we find either the continuous replica symmetry breaking seen in the Sherrington-Kirkpartick model or a one-step solution similar to that found in structural glasses. Our results are confirmed by numerical simulations and the link between the type of spin-glass behavior and the density of eigenvalues of the interaction matrix is discussed.
Resumo:
We present a microscopic analysis of shot-noise suppression due to long-range Coulomb interaction in semiconductor devices under ballistic transport conditions. An ensemble Monte Carlo simulator self-consistently coupled with a Poisson solver is used for the calculations. A wide range of injection-rate densities leading to different degrees of suppression is investigated. A sharp tendency of noise suppression at increasing injection densities is found to scale with a dimensionless Debye length related to the importance of space-charge effects in the structure.
Resumo:
Various modern nucleon-nucleon (NN) potentials yield a very accurate fit to the nucleon-nucleon scattering phase shifts. The differences between these interactions in describing properties of nuclear matter are investigated. Various contributions to the total energy are evaluated employing the Hellmann-Feynman theorem. Special attention is paid to the two-nucleon correlation functions derived from these interactions. Differences in the predictions of the various interactions can be traced back to the inclusion of nonlocal terms.
Resumo:
Delta isobar components in the nuclear many-body wave function are investigated for the deuteron, light nuclei (16O), and infinite nuclear matter within the framework of the coupled-cluster theory. The predictions derived for various realistic models of the baryon-baryon interaction are compared to each other. These include local (V28) and nonlocal meson exchange potentials (Bonn2000) but also a model recently derived by the Salamanca group accounting for quark degrees of freedom. The characteristic differences which are obtained for the NDelta and Delta Delta correlation functions are related to the approximation made in deriving the matrix elements for the baryon-baryon interaction.
Resumo:
Information on level density for nuclei with mass numbers A?20250 is deduced from discrete low-lying levels and neutron resonance data. The odd-mass nuclei exhibit in general 47 times the level density found for their neighboring even-even nuclei at the same excitation energy. This excess corresponds to an entropy of ?1.7kB for the odd particle. The value is approximately constant for all midshell nuclei and for all ground state spins. For these nuclei it is argued that the entropy scales with the number of particles not coupled in Cooper pairs. A simple model based on the canonical ensemble theory accounts qualitatively for the observed properties.
Resumo:
The influence of Delta isobar components on the ground-state properties of nuclear systems is investigated for nuclear matter as well as finite nuclei. Many-body wave functions, including isobar configurations and binding energies, are evaluated employing the framework of the coupled-cluster theory. It is demonstrated that the effect of isobar configurations depends in a rather sensitive way on the model used for the baryon-baryon interaction. As examples for realistic baryon-baryon interactions with explicit inclusion of isobar channels we use the local (V28) and nonlocal meson-exchange potentials (Bonn2000) but also a model recently developed by the Salamanca group, which is based on a quark picture. The differences obtained for the nuclear observables are related to the treatment of the interaction, the pi-exchange contributions in particular, at high momentum transfers.