894 resultados para Integral healthcare
Resumo:
In this study a minimum variance neuro self-tuning proportional-integral-derivative (PID) controller is designed for complex multiple input-multiple output (MIMO) dynamic systems. An approximation model is constructed, which consists of two functional blocks. The first block uses a linear submodel to approximate dominant system dynamics around a selected number of operating points. The second block is used as an error agent, implemented by a neural network, to accommodate the inaccuracy possibly introduced by the linear submodel approximation, various complexities/uncertainties, and complicated coupling effects frequently exhibited in non-linear MIMO dynamic systems. With the proposed model structure, controller design of an MIMO plant with n inputs and n outputs could be, for example, decomposed into n independent single input-single output (SISO) subsystem designs. The effectiveness of the controller design procedure is initially verified through simulations of industrial examples.
Resumo:
We consider the classical coupled, combined-field integral equation formulations for time-harmonic acoustic scattering by a sound soft bounded obstacle. In recent work, we have proved lower and upper bounds on the $L^2$ condition numbers for these formulations, and also on the norms of the classical acoustic single- and double-layer potential operators. These bounds to some extent make explicit the dependence of condition numbers on the wave number $k$, the geometry of the scatterer, and the coupling parameter. For example, with the usual choice of coupling parameter they show that, while the condition number grows like $k^{1/3}$ as $k\to\infty$, when the scatterer is a circle or sphere, it can grow as fast as $k^{7/5}$ for a class of `trapping' obstacles. In this paper we prove further bounds, sharpening and extending our previous results. In particular we show that there exist trapping obstacles for which the condition numbers grow as fast as $\exp(\gamma k)$, for some $\gamma>0$, as $k\to\infty$ through some sequence. This result depends on exponential localisation bounds on Laplace eigenfunctions in an ellipse that we prove in the appendix. We also clarify the correct choice of coupling parameter in 2D for low $k$. In the second part of the paper we focus on the boundary element discretisation of these operators. We discuss the extent to which the bounds on the continuous operators are also satisfied by their discrete counterparts and, via numerical experiments, we provide supporting evidence for some of the theoretical results, both quantitative and asymptotic, indicating further which of the upper and lower bounds may be sharper.
Resumo:
A neural network enhanced proportional, integral and derivative (PID) controller is presented that combines the attributes of neural network learning with a generalized minimum-variance self-tuning control (STC) strategy. The neuro PID controller is structured with plant model identification and PID parameter tuning. The plants to be controlled are approximated by an equivalent model composed of a simple linear submodel to approximate plant dynamics around operating points, plus an error agent to accommodate the errors induced by linear submodel inaccuracy due to non-linearities and other complexities. A generalized recursive least-squares algorithm is used to identify the linear submodel, and a layered neural network is used to detect the error agent in which the weights are updated on the basis of the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model, and therefore the error agent is naturally functioned within the control law. In this way the controller can deal not only with a wide range of linear dynamic plants but also with those complex plants characterized by severe non-linearity, uncertainties and non-minimum phase behaviours. Two simulation studies are provided to demonstrate the effectiveness of the controller design procedure.
Resumo:
A self-tuning proportional, integral and derivative control scheme based on genetic algorithms (GAs) is proposed and applied to the control of a real industrial plant. This paper explores the improvement in the parameter estimator, which is an essential part of an adaptive controller, through the hybridization of recursive least-squares algorithms by making use of GAs and the possibility of the application of GAs to the control of industrial processes. Both the simulation results and the experiments on a real plant show that the proposed scheme can be applied effectively.
Resumo:
Determination of varicella zoster virus (VZV) immunity in healthcare workers without a history of chickenpox is important for identifying those in need of vOka vaccination. Post immunisation, healthcare workers in the UK who work with high risk patients are tested for seroconversion. To assess the performance of the time-resolved fluorescence immunoassay (TRFIA) for the detection of antibody in vaccinated as well as unvaccinated individuals, a cut-off was first calculated. VZV-IgG specific avidity and titres six weeks after the first dose of vaccine were used to identify subjects with pre-existing immunity among a cohort of 110 healthcare workers. Those with high avidity (≥60%) were considered to have previous immunity to VZV and those with low or equivocal avidity (<60%) were considered naive. The former had antibody levels ≥400mIU/mL and latter had levels <400mIU/mL. Comparison of the baseline values of the naive and immune groups allowed the estimation of a TRFIA cut-off value of >130mIU/mL which best discriminated between the two groups and this was confirmed by ROC analysis. Using this value, the sensitivity and specificity of TRFIA cut-off were 90% (95% CI 79-96), and 78% (95% CI 61-90) respectively in this population. A subset of samples tested by the gold standard Fluorescence Antibody to Membrane Antigen (FAMA) test showed 84% (54/64) agreement with TRFIA.
Resumo:
A new boundary integral operator is introduced for the solution of the soundsoft acoustic scattering problem, i.e., for the exterior problem for the Helmholtz equation with Dirichlet boundary conditions. We prove that this integral operator is coercive in L2(Γ) (where Γ is the surface of the scatterer) for all Lipschitz star-shaped domains. Moreover, the coercivity is uniform in the wavenumber k = ω/c, where ω is the frequency and c is the speed of sound. The new boundary integral operator, which we call the “star-combined” potential operator, is a slight modification of the standard combined potential operator, and is shown to be as easy to implement as the standard one. Additionally, to the authors' knowledge, it is the only second-kind integral operator for which convergence of the Galerkin method in L2(Γ) is proved without smoothness assumptions on Γ except that it is Lipschitz. The coercivity of the star-combined operator implies frequency-explicit error bounds for the Galerkin method for any approximation space. In particular, these error estimates apply to several hybrid asymptoticnumerical methods developed recently that provide robust approximations in the high-frequency case. The proof of coercivity of the star-combined operator critically relies on an identity first introduced by Morawetz and Ludwig in 1968, supplemented further by more recent harmonic analysis techniques for Lipschitz domains.
Resumo:
In this paper we consider boundary integral methods applied to boundary value problems for the positive definite Helmholtz-type problem -DeltaU + alpha U-2 = 0 in a bounded or unbounded domain, with the parameter alpha real and possibly large. Applications arise in the implementation of space-time boundary integral methods for the heat equation, where alpha is proportional to 1/root deltat, and deltat is the time step. The corresponding layer potentials arising from this problem depend nonlinearly on the parameter alpha and have kernels which become highly peaked as alpha --> infinity, causing standard discretization schemes to fail. We propose a new collocation method with a robust convergence rate as alpha --> infinity. Numerical experiments on a model problem verify the theoretical results.
Resumo:
In recent years it has been noted that boundaries between public and private providers of many types of welfare have become blurred. This paper uses three dimensions of publicness to analyse this blurring of boundaries in relation to providers of healthcare in England. The authors find that, although most care is still funded and provided by the state, there are significant additional factors in respect of ownership and social control which indicate that many English healthcare providers are better understood as hybrids. Furthermore, the authors raise concerns about the possible deleterious effects of diminishing aspects of publicness on English healthcare. The most important of these is a decrease in accountability