950 resultados para Inflammatory Response
Resumo:
BACKGROUND: Transforming growth factors betas (TGF-betas) are implicated in pancreatic tissue repair but their role in acute pancreatitis is not known. To determine whether endogenous TGF-betas modulate the course of caerulein induced acute pancreatitis, caerulein was administered to wild-type (FVB-/-) and transgenic mice that are heterozygous (FVB+/-) for expression of a dominant negative type II TGF-beta receptor. METHODS: After 7 hourly supramaximal injections of caerulein, the pancreas was evaluated histologically and serum was assayed for amylase and lipase levels. Next, the effects of caerulein on amylase secretion were determined in mouse pancreatic acini, and cholecystokinin (CCK) receptor expression was assessed. RESULTS: The normal mouse pancreas was devoid of inflammatory cells whereas the pancreas from transgenic mice contained lymphocytic infiltrates. Caerulein injection in wild-type mice resulted in 6- and 36-fold increases in serum amylase and lipase levels, respectively, increased serum trypsinogen activation peptide (TAP) levels, gross oedema and a marked inflammatory response in the pancreas that consisted mainly of neutrophils and macrophages. By contrast, FVB+/- mice exhibited minimal alterations in response to caerulein with attenuated neutrophil-macrophage infiltrates. Moreover, acini from FVB+/- mice did not exhibit restricted stimulation at high caerulein concentrations, even though CCK receptor mRNA levels were not decreased. CONCLUSION: Our findings indicate that a functional TGF-beta signalling pathway may be required for caerulein to induce acute pancreatitis and for the CCK receptor to induce acinar cell damage at high ligand concentrations. Our results also support the concept that restricted stimulation at high caerulein concentrations contributes to the ability of caerulein to induce acute pancreatitis.
Resumo:
BACKGROUND AND OBJECTIVES: The thrombotic thrombocytopenic purpura-hemolytic uremic syndromes (TTP-HUS) have diverse etiologies, clinical manifestations, and risk factors, but the events that may trigger acute episodes are often unclear. We describe the occurrence of TTP-HUS following pancreatitis and consider whether pancreatitis may be a triggering event for acute episodes of TTP-HUS. DESIGN AND METHODS: We report on three patients from the Oklahoma Registry and two patients from Northwestern University who had an acute episode of TTP-HUS following pancreatitis. A systematic review of published case reports was performed to identify additional patients who had TTP-HUS following pancreatitis. RESULTS. In each of our five patients there was an apparent etiology of alcoholism or common bile duct obstruction for the pancreatitis and no evidence of TTP-HUS when the pancreatitis was diagnosed. Two patients had severe ADAMTS13 deficiency with an inhibitor; in one of these patients TTP-HUS recurred following a subsequent recurrent episode of pancreatitis. The systematic review identified 16 additional patients who had TTP-HUS following pancreatitis; recurrent TTP-HUS occurred in three of these patients following a subsequent episode of recurrent pancreatitis. In all 21 patients, the interval between the diagnosis of pancreatitis and TTP-HUS was short (1-13 days; median, 3 days). The three Oklahoma patients represent approximately 1% of the 356 patients in the Registry. INTERPRETATION AND CONCLUSIONS: These observations suggest that in some patients pancreatitis, a disorder that results in an intense systemic inflammatory response, may be a triggering event for acute episodes of TTP-HUS.
Resumo:
BACKGROUND: Genetically transmitted traits such as cytokine gene polymorphisms may accentuate the host inflammatory response to the bacterial challenge and influence susceptibility to periodontitis. OBJECTIVE: To systematically review the evidence of an association between the interleukin-1 (IL-1) composite genotype, i.e. presence of the allele 2 in the gene clusters IL-1A-889 and in IL-1B +3953, and periodontitis progression and/or treatment outcomes. Material and Methods: Based on the focused question, a search was conducted for longitudinal clinical trials comparing progression of periodontitis and/or treatment outcomes in IL-1 genotype-positive (carrying allele 2) and IL-1 genotype-negative (not carrying allele 2) subjects. A search in the National Library of Medicine computerized bibliographic database MEDLINE and a manual search were performed. Selection of publications, extraction of data and validity assessment were made independently by two reviewers. RESULTS: The search provided 122 titles of which 11 longitudinal publications were included. The heterogeneity of the data prevented the performance of a meta-analysis. While findings from some publications rejected a possible role of IL-1 composite genotype on progression of periodontitis after various therapies, other reported a prognostic value for disease progression of the positive IL-1 genotype status. When assessed on a multivariate risk assessment model, several publications concluded that the assessment of the IL-1 composite genotype in conjunction with other covariates (e.g. smoking and presence of specific bacteria) may provide additional information on disease progression. The small sample size of the available publications, however, requires caution in the interpretation of the results. CONCLUSION: Based on these findings, (i) there is insufficient evidence to establish if a positive IL-1 genotype status contributes to progression of periodontitis and/or treatment outcomes. Therefore, (ii) results obtained with commercially available tests should be interpreted with caution.
Resumo:
Combustion-derived and synthetic nano-sized particles (NSP) have gained considerable interest among pulmonary researchers and clinicians for two main reasons: 1) Inhalation exposure to combustion-derived NSP was associated with increased pulmonary and cardiovascular morbidity and mortality as suggested by epidemiological studies. Experimental evidence has provided a mechanistic picture of the adverse health effects associated with inhalation of combustion-derived and synthetic NSP. 2) The toxicological potential of NSP contrasts with the potential application of synthetic NSP in technological as well as medicinal settings with the latter including the use of NSP as diagnostics or therapeutics. In order to shed light on this paradox, this article aims to highlight recent findings about the interaction of inhaled NSP with the structures of the respiratory tract including surfactant and alveolar macrophages and epithelial cells. Cellular responses to NSP exposure include the generation of reactive oxygen species and the induction of an inflammatory response. Furthermore, this review places special emphasis on methodological differences between experimental studies and the caveats associated with the dose metrics and points out ways to overcome inherent methodological problems. Key words: electron tomography, surfactant, translocation, oxidative stress, inflammation.
Resumo:
BACKGROUND: Pulmonary inflammation after cardiac surgery with cardiopulmonary bypass (CPB) has been linked to respiratory dysfunction and ultrastructural injury. Whether pretreatment with methylprednisolone (MP) can preserve pulmonary surfactant and blood-air barrier, thereby improving pulmonary function, was tested in a porcine CPB-model. MATERIALS AND METHODS: After randomizing pigs to placebo (PLA; n = 5) or MP (30 mg/kg, MP; n = 5), animals were subjected to 3 h of CPB with 1 h of cardioplegic cardiac arrest. Hemodynamic data, plasma tumor necrosis factor-alpha (TNF-alpha, ELISA), and pulmonary function parameters were assessed before, 15 min after CPB, and 8 h after CPB. Lung biopsies were analyzed for TNF-alpha (Western blot) or blood-air barrier and surfactant morphology (electron microscopy, stereology). RESULTS: Systemic TNF-alpha increased and cardiac index decreased at 8 h after CPB in PLA (P < 0.05 versus pre-CPB), but not in MP (P < 0.05 versus PLA). In both groups, at 8 h after CPB, PaO(2) and PaO(2)/FiO(2) were decreased and arterio-alveolar oxygen difference and pulmonary vascular resistance were increased (P < 0.05 versus baseline). Postoperative pulmonary TNF-alpha remained unchanged in both groups, but tended to be higher in PLA (P = 0.06 versus MP). The volume fraction of inactivated intra-alveolar surfactant was increased in PLA (58 +/- 17% versus 83 +/- 6%) and MP (55 +/- 18% versus 80 +/- 17%) after CPB (P < 0.05 versus baseline for both groups). Profound blood-air barrier injury was present in both groups at 8 h as indicated by an increased blood-air barrier integrity score (PLA: 1.28 +/- 0.03 versus 1.70 +/- 0.1; MP: 1.27 +/- 0.08 versus 1.81 +/- 0.1; P < 0.05). CONCLUSION: Despite reduction of the systemic inflammatory response and pulmonary TNF-alpha generation, methylprednisolone fails to decrease pulmonary TNF-alpha and to preserve pulmonary surfactant morphology, blood-air barrier integrity, and pulmonary function after CPB.
Resumo:
AIMS: To evaluate the expression of matrix metalloproteinase-19 (MMP-19) in oropharyngeal squamous cell carcinoma along with its association with structural features of invasiveness. To investigate whether MMP-19 expression correlates with lymphatic or systemic metastasis and prognosis in patients who have received definitive radiotherapy. METHODS AND RESULTS: The histological evaluation of the invasive front was based on Bryne's malignancy grading system. We correlated the immunohistochemical expression pattern with morphological parameters which characterize tumor invasiveness such as keratinization, nuclear polymorphism, invasion pattern, and the host inflammatory response. Local immunoreactivity for MMP-19 was positively correlated with tumor invasiveness as reflected in its structural characteristics and the degree of nuclear polymorphism, and negatively correlated with the inflammatory response of the host. No correlation existed between MMP-19 expression and clinicopathological features (TNM stage, grade of differentiation) or a patient''s outcome and prognosis. CONCLUSIONS: This latter finding probably reflects the unique change for MMPs from high immunoreactivity within healthy tissue areas and non-invasive tumor parts, through absence in the least invasive neoplastic regions, to strong re-expression at a highly invasive front of the same tumor. Our findings indicate that MMP-19 can be used as a marker for tumor invasiveness in patients with oropharyngeal squamous cell carcinoma.
Resumo:
BACKGROUND AND OBJECTIVES: Thoracic epidural analgesia (TEA) is increasingly used for perioperative analgesia. If patients with TEA develop sepsis or systemic inflammatory response subsequent to extended surgery the question arises if it would be safe to continue TEA with its beneficial effects of improving gastrointestinal perfusion and augmenting tissue oxygenation. A major concern in this regard is hemodynamic instability that might ensue from TEA-induced vasodilation. The objective of the present study was to assess the effects of TEA on systemic and pulmonary hemodynamics in a sepsis model of hyperdynamic endotoxemia. METHODS: After a baseline measurement in healthy sheep (n = 14), Salmonella thyphosa endotoxin was continuously infused at a rate of 10 ngxkg(-1)xmin(-1) over 16 hours. The surviving animals (n = 12) were then randomly assigned to 1 of 2 study groups. In the treatment group (n = 6), continuous TEA was initiated with 0.1 mLxkg(-1) bupivacaine 0.125% and maintained with 0.1 mLxkg(-1)xh(-1). In the control group (n = 6) the same amount of isotonic sodium saline solution was injected at the same rate through the epidural catheter. RESULTS: In both experimental groups cardiac index increased and systemic vascular resistance decreased concurrently (each P < .05). Functional epidural blockade in the TEA group was confirmed by sustained suppression of the cutaneous (or panniculus) reflex. During the observational period of 6 hours neither systemic nor pulmonary circulatory variables were impaired by TEA. CONCLUSIONS: From a hemodynamic point of view, TEA presents as a safe treatment option in sepsis or systemic inflammatory response syndrome.
Resumo:
Bacteriolytic antibiotics cause the release of bacterial components that augment the host inflammatory response, which in turn contributes to the pathophysiology of brain injury in bacterial meningitis. In the present study, antibiotic therapy with nonbacteriolytic daptomycin was compared with that of bacteriolytic ceftriaxone in experimental pneumococcal meningitis, and the treatments were evaluated for their effects on inflammation and brain injury. Eleven-day-old rats were injected intracisternally with 1.3 x 10(4) +/- 0.5 x 10(4) CFU of Streptococcus pneumoniae serotype 3 and randomized to therapy with ceftriaxone (100 mg/kg of body weight subcutaneously [s.c.]; n = 55) or daptomycin (50 mg/kg s.c.; n = 56) starting at 18 h after infection. The cerebrospinal fluid (CSF) was assessed for bacterial counts, matrix metalloproteinase-9 levels, and tumor necrosis factor alpha levels at different time intervals after infection. Cortical brain damage was evaluated at 40 h after infection. Daptomycin cleared the bacteria more efficiently from the CSF than ceftriaxone within 2 h after the initiation of therapy (log(10) 3.6 +/- 1.0 and log(10) 6.3 +/- 1.4 CFU/ml, respectively; P < 0.02); reduced the inflammatory host reaction, as assessed by the matrix metalloproteinase-9 concentration in CSF 40 h after infection (P < 0.005); and prevented the development of cortical injury (cortical injury present in 0/30 and 7/28 animals, respectively; P < 0.004). Compared to ceftriaxone, daptomycin cleared the bacteria from the CSF more rapidly and caused less CSF inflammation. This combined effect provides an explanation for the observation that daptomycin prevented the development of cortical brain injury in experimental pneumococcal meningitis. Further research is needed to investigate whether nonbacteriolytic antibiotic therapy with daptomycin represents an advantageous alternative over current bacteriolytic antibiotic therapies for the treatment of pneumococcal meningitis.
Resumo:
OBJECTIVE: The standard heart-lung machine is a major trigger of systemic inflammatory response and the morbidity attributed to conventional extracorporeal circulation (CECC) is still significant. Reduction of blood-artificial surface contact and reduction of priming volume are principal aims in minimized extracorporeal circulation (MECC) cardiopulmonary bypass systems. The aim of this paper is to give an overview of the literature and to present our experience with the MECC-smart suction system. METHODS AND RESULTS: At our institution, 1799 patients underwent isolated coronary artery bypass grafting (CABG) surgery, 1372 with a MECC-smart suction system and 427 with CECC. All in-hospital data were assessed and the results were compared between the 2 groups. Patient characteristics and the distribution of EuroSCORE risk profile in our collective were similar between both groups. Average age in the MECC collective was 67.5 +/- 11.4 years and average EuroSCORE was 5.0 +/- 1.5. Average number of distal anastomoses was similar to the average number encountered in patients undergoing CABG surgery with CECC (3.3 +/- 1.0 for MECC versus 3.2 +/- 1.1 for CECC; P = ns). Myocardial protection is superior in MECC patients with lower postoperative maximal cTnI values (11.0 +/- 10.8 micromol/L for MECC versus 24.7 +/- 25.3 micromol/L for CECC; P < .05). Postoperative recovery was faster in patients operated on with the MECC-smart suction system and discharge from the hospital was earlier than for CECC patients (7.4 +/- 1.9 days for MECC versus 8.8 +/- 3.8 days for CECC; P < .05). CONCLUSIONS: The MECC-smart suction system is a safe perfusion technique for CABG surgery. In patients operated on with this system, the clinical outcome seems to be better than in patients operated on with CECC. This promising and less damaging perfusion technology has the potential to replace CECC systems in CABG surgery.
Resumo:
Objectives: The goal of the present study was to elucidate the contribution of the newly recognized virulence factor choline to the pathogenesis of Streptococcus pneumoniae in an animal model of meningitis. Results: The choline containing strain D39Cho(-) and its isogenic choline-free derivative D39Cho(-)licA64 -each expressing the capsule polysaccharide 2 - were introduced intracisternally at an inoculum size of 10(3) CFU into 11 days old Wistar rats. During the first 8 h post infection both strains multiplied and stimulated a similar immune response that involved expression of high levels of proinflammatory cytokines, the matrix metalloproteinase 9 (MMP-9), IL-10, and the influx of white blood cells into the CSF. Virtually identical immune response was also elicited by intracisternal inoculation of 10(7) CFU equivalents of either choline-containing or choline-free cell walls. At sampling times past 8 h strain D39Cho(-) continued to replicate accompanied by an intense inflammatory response and strong granulocytic pleiocytosis. Animals infected with D39Cho(-) died within 20 h and histopathology revealed brain damage in the cerebral cortex and hippocampus. In contrast, the initial immune response generated by the choline-free strain D39Cho(-)licA64 began to decline after the first 8 h accompanied by elimination of the bacteria from the CSF in parallel with a strong WBC response peaking at 8 h after infection. All animals survived and there was no evidence for brain damage. Conclusion: Choline in the cell wall is essential for pneumococci to remain highly virulent and survive within the host and establish pneumococcal meningitis.
Resumo:
The effects of hydration status on cerebral blood flow (CBF) and development of cerebrospinal fluid (CSF) lactic acidosis were evaluated in rabbits with experimental pneumococcal meningitis. As loss of cerebrovascular autoregulation has been previously demonstrated in this model, we reasoned that compromise of intravascular volume might severely affect cerebral perfusion. Furthermore, as acute exacerbation of the inflammatory response in the subarachnoid space has been observed after antibiotic therapy, animals were studied not only while meningitis evolved, but also 4-6 h after treatment with antibiotics to determine whether there would also be an effect on CBF. To produce different levels of hydration, animals were given either 50 ml/kg per 24 h of normal saline ("low fluid") or 150 ml/kg 24 h ("high fluid"). After 16 h of infection, rabbits that were given the lower fluid regimen had lower mean arterial blood pressure (MABP), lower CBF, and higher CSF lactate compared with animals that received the higher fluid regimen. In the first 4-6 h after antibiotic administration, low fluid rabbits had a significant decrease in MABP and CBF compared with, and a significantly greater increase in CSF lactate concentration than, high fluid rabbits. This study suggests that intravascular volume status may be a critical variable in determining CBF and therefore the degree of cerebral ischemia in meningitis.
Resumo:
The prevalence of periodontitis and cardiovascular disease (CVD) is high. A mixed infectious biofilm etiology of periodontitis is known but not fully established in CVD. Cofactors; smoking habits, stress, ethnicity, genetics, socioeconomics and age contribute to both diseases. The objectives of this report are to summarize factors in regards to CVD and periodontitis that are clinically relevant. The hypothesis behind a relationship between the two conditions can be founded in (I) shared infections etiology, (II) shared inflammatory response, (III) epidemiological and case-control studies, and (IV) periodontal studies demonstrating improvements of CVD markers. Streptococcus species in the S. mitis group, and S. anginosus group have been identified in periodontitis and are known as pathogens in endocarditis possibly transported from the oral cavity to the heart through bacteremia during dental therapies, and tooth brushing. Other periodontal bacteria such as Porphyromonas gingivalis, Fusobacterium nucleatum and Parvimonas micra are beta-lactamase producing and may contribute to antibiotic resistance (extended spectrum beta-lactamases). Other bacteria in CVD and periodontitis include Staphylococcus aureus, and Pseudomonas aeruginosa. Chlamydia pneumoniae and P. gingivalis lipopolyysaccharide capsels share homology and induce heat-shock protein activity and a cascade of proinflammatory cytokines. Associations between periodontitis and CVD have been presented in many studies when controlling for confounders. Other studies have demonstrated that periodontal therapies increase brachial artery flow rate and reduce serum inflammatory cytokine levels. Thus, physicians caring for subjects at CVD risk should consult with dentists/periodontists. Dentists must improve their medical knowledge and also learn to consult with physicians when treating patients at CVD risk.
Resumo:
Thrombotic thrombocytopenic purpura (TTP) has multiple clinical manifestations and risk factors, but the events that actually trigger acute episodes of TTP are often unclear. We describe the case of a 56-year-old woman who presented with clinical signs and symptoms of TTP and acute pancreatitis. We discuss whether pancreatitis was due to ischemic pancreatic damage caused by microvascular platelet clumping in the frame of TTP, or whether acute pancreatitis, a disorder that results in an intense systemic inflammatory response, may be a triggering event for acute episodes of TTP.
Resumo:
Coronary aneurysm formation after drug-eluting stent (DES) implantation is a rare complication with late stent thrombosis as a potentially fatal sequela. One possible mechanism involved in aneurysm formation is thought to be late-acquired stent malapposition due to a local inflammatory response to the polymer and/or the drug. Coronary aneurysm formation has been documented with sirolimus- and paclitaxel-eluting stents. We report a case of coronary aneurysm formation in a patient with an everolimus-eluting stent (EES; Xience(R) Abbott Vascular, Redwood City, California) relatively early (3 months) after stent implantation. This case illustrates that even with second-generation DES like the EES, which is thought to be highly biocompatible, there can be adverse reactions to the polymer and/or to the drug.
Resumo:
Enterohemorrhagic Escherichia coli (EHEC) are the causative agent of hemolytic-uremic syndrome. In the first stage of the infection, EHEC interact with human enterocytes to modulate the innate immune response. Inducible NO synthase (iNOS)-derived NO is a critical mediator of the inflammatory response of the infected intestinal mucosa. We therefore aimed to analyze the role of EHEC on iNOS induction in human epithelial cell lines. In this regard, we show that EHEC down-regulate IFN-gamma-induced iNOS mRNA expression and NO production in Hct-8, Caco-2, and T84 cells. This inhibitory effect occurs through the decrease of STAT-1 activation. In parallel, we demonstrate that EHEC stimulate the rapid inducible expression of the gene hmox-1 that encodes for the enzyme heme oxygenase-1 (HO-1). Knock-down of hmox-1 gene expression by small interfering RNA or the blockade of HO-1 activity by zinc protoporphyrin IX abrogated the EHEC-dependent inhibition of STAT-1 activation and iNOS mRNA expression in activated human enterocytes. These results highlight a new strategy elaborated by EHEC to control the host innate immune response.