974 resultados para Infinite.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the crystal structure of the title compound, (NH4)[AsO2 (OH)(C6H4NO2)], the 4-nitrophenylarsonate anions and ammonium cations are linked through hydrogen bonds to form infinite chains along the b axis. The hydroxyl O atom of the 4-nitrophenylarsonate anion acts as both an acceptor and a donor of hydrogen bonds. All atoms are located in general positions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A neutral open-frame work zincophosphate has been hydrothermally synthesized: structure refinement shows that it is composed of Zn4O12 tetramers and infinite Zn-O-Zn chains that are linked by PO4 groups forming one-dimensional 16-membered ring channels along b direction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel organic-inorganic hybrid vanadium oxide [V4O10(o-phen)(2)], involving all vanadium atoms present in +5 oxidation, has been hydrothermally synthesized and characterized by elemental analysis, IR, UV-vis, ESR, XPS spectra and TG-DTA thermal analysis. The single-crystal X-ray diffraction shows that the red-brown crystal is formed in the triclinic system, space group P (1) over bar, a = 9.782(2), b = 6.5124(14), c = 19.765(4) Angstrom, alpha = 89.94(2)degrees, beta = 100.66(2)degrees, gamma = 89.86(2)degrees. The title compound exhibits an infinite one-dimensional ladder-type tetravanadate skeleton with organonitrogen donors of o-phenanthroline ligands coordinated directly to the vanadium oxide framework.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two new compounds, [CoL2(H2O)(2)](NO3)(2). 8H(2)O (1) and [CoL(H2O)(2)(CH3CO2)(2)]. H2O (2), were obtained from self-assembly of the corresponding metal salts with 1,1'-(1,4-butanediyl)bis(benzimidazole) (L). In 1, each cobalt ion is coordinated to four nitrogen atoms from four molecules of L, and to two water molecules. Metal ions are bridged by L ligands to form infinite (4, 4) networks that contain 44-membered rings. The (4, 4) networks of 1 stack in a parallel fashion, resulting in the formation of large channels in the material. In 2, each cobalt ion is coordinated to two N atoms from two L molecules, two water molecules and two carboxylate O atoms from two acetate anions. Each L molecule is coordinated to two cobalt ions, acting as a bridging ligand as in 1. The bridged cobalt ions form an infinite zigzag chain structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal of the title compound (C10H18N2O9SZn M-r=407.69) belongs to the hexagonal system, space group P 6(5) with cell parameters: a=11.411 (2), c=20.908(4) Angstrom, V=2357.7(7) Angstrom(3), Z=6, D-c=1.723g/cm(3), F(000)=1260, mu(MoKa)=1.743mm(-1). The final R and omega R factors are 0.072 and 0.178 respectively for 1335 observed reflections. in the structure, zinc ions are bridged by 4,4'-bipyridine to form infinite chains. The sheets containing parallel chains stack along a 65 screw axis to give a helical staircase motif. The helical structure is mainly controlled by the hydrogen bonds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel europium(III) coordination polymer with a new double betaine derivative, {[Eu(L')(NO3)(H2O)(3)](NO3)(2). 3.5H(2)O}(n) (L-1 = 1,3-bis(pyridinio-4-carboxylato)-propane) has been synthesized and its structure determined. Its luminescence properties have also been studied. The title metal carboxylate coordination polymer contains centrosymmetric dimeric units in which each pair of metal ions is linked by a pair of syn-anti carboxylato-O,O' groups, and each pair of such dimeric units is bridged by the backbones of L-1 ligands to form infinite double chains in the b direction. These metal carboxylate chains are further cross-linked by hydrogen bonds among both coordinated and discrete nitrate anions, aqua ligands and lattice water molecules to form a three-dimensional network. Luminescent data show that the L-1 ligand is a good energy donor and the complex has a relatively long luminescent lifetime.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the title compound, catena-poly[dipotassium [[(oxalato-O,O')dioxomolybdate]-mu-oxo]monohydrate], oxalate acts as a bidentate ligand coordinating to each Mo atom through the two deprotonated carboxylate groups. The coordination polyhedron of molybdenum is distorted octahedral and there are infinite chains in the structure. Principal dimensions are: Mo-O(terminal) 1.560 (3) and 1.739 (3) Angstrom, Mo-O(bridging) 2.046 (4) and 2.410 (4) Angstrom, and Mo-O(carboxylate) 1.949 (3) and 2.113 (3) Angstrom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four new polymeric lanthanide(III) complexes of nicotinic acid N-oxide and isonicotinic acid N-oxide have been synthesized and structurally determined. In the isomorphous compounds [(Ln(L-1)(3) (H2O)(2))(n)]. 4nH(2)O(HL1 = nicotinic acid N-oxide; Ln = Eu, 1; Ln = Er, 2) the lanthanide(III) ions form infinite double chains along the b direction through the coordination of bridging carboxylate and N-oxide groups. The chains are cross-linked through hydrogen bonds between aqua ligands and uncoordinated N-oxide groups and between aqua ligands and lattice water molecules, to form a three-dimensional network. [(Eu(L-2)(2)-(H2O)(4))(n)](NO3)(n). nH(2)O (HL2 = isonicotinic acid N-oxide, 3) has a polymeric structure in which the europium (III) ions are connected into infinite chains by pairs of syn-syn carboxylate groups. Adjacent chains are interlinked by hydrogen bonds between aqua ligands and N-oxide groups to form a layer parallel to the (100) plane, and such layers are connected by hydrogen bonds between nitrate anions and aqua ligands, and between oxide groups and lattice water molecules, into a three-dimensional network. In [(Er-2(L-2)(4)(H2O)(10))](NO3)(2). H2O, 4, dinuclear units are inter-linked into a three-dimensional network through hydrogen bonding between aqua ligands and N-oxide groups of both bidentate bridging and unidentate L-2 ligands. Factors affecting the formation of coordination chains and dinuclear units are discussed. Luminescence properties of 1 and 3 have also been studied. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel polymeric Pr(III) complex with a new double betaine, namely [{Pr(L-1)(1.5)(H2O)(2)}(n)] [ClOli4]3(n). nH(2)O (1) (L-1= 1,4-diazoniobicyclo[2,2,2]octane- 1,4-dipropionate), has been synthesized and characterized by X-ray analysis. In the title complex, the Pr(III) atom is nine-coordinated by seven oxygen atoms from five L-1 ligands and two aqua ligands. Each pair of adjacent praseodymium(III) atoms is linked by a pair of mu(3) chelating and bridging carboxylate groups, thus forming an infinite metal metal chain running parallel to the a direction, and such chains are cross-linked by flexible backbones of L-1 ligands into a three-dimensional network with the perchlorate anions and lattice water molecules accommodated in the interstitial space. The title complex crystallizes in the monoclinic space group P2(1)/n with a = 8.085(2), b = 14.316(3), c = 29.775(6) Angstrom, beta = 103.04(3)degrees and Z = 4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The heterogeneous electron transfer rate constants (k(s)) of seven ferrocene derivatives were estimated using cyclic voltammograms under mixed spherical/semi-infinite linear diffusion and steady-state voltammetry at a microdisk electrode in polymer electrolyte. The k(s) and diffusion coefficient (D) are both 100 to 1000-fold smaller in polymer solvent than in monomeric solvents, and the D and k(s) decrease with increasing polymer chain length. The results conform to the difference of viscosity (eta) or relaxation time (tau(L)) for these different solvents. The k(s) and D increase with increasing temperature, and the activation barriers of the electrode reaction are obtained. The influences of the substituting group in the ferrocene ring on k(s) and D are discussed. The k(s) are proportional to the D of the ferrocene derivatives, which indicates that solvent dynamics control the electrode reaction. (C) 1998 Elsevier Science S.A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal structure of a novel macrocyclic ligand complex of Pr-III, C112H178O52N8S4Pr2, [Pr2L2(HL)(2)(H2O)(6)]. 22H(2)O is reported. The macrocyclic ligand has pendant acetic acid through which the ligand is coordinated to the Pr-III ion. For the dimeric unit, [Pr2L2(HL)(2)(H2O)(6)], two Pr-III ions are connected by two bridging-chelating carboxyl groups and two bridging carboxyl groups of the ligands, and each Pr-III ion is also bonded to a unidentate carboxyl group of the ligand and three water molecules. The dimeric units are bridged by four ligands through their carboxyl groups to form an infinite one-dimensional chain. The coordination number of the Pr-III ion is nine, with a distorted tricapped trigonal prismatic configuration. (C) 1997 Elsevier Science Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

REL3.H2O (RE=Y, La is similar to Lu; HL = o-chlorobenzoic acid) were synthesized. Their thermal decomposition and IR spectra were studied. The crystal structures of the complexes of neodymium, terbium and lutetium were determined by X-ray diffraction method. They crystallize in the monoclinic space group P2(1)/n and show infinite chain structures. The coordination numbers of rare earth ions are nine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

catena-Poly[{pentaaqua(L-proline-O)-erbium-mu-(L-proline-O:O')} trichloride], {[Er(C5H9-NO2)2(H2O)5]Cl3}n, M(r) = 594.0, monoclinic, P2(1), a = 8.294 (1), b = 10.981 (3), c = 11.934 (3) angstrom, beta = 107.04 (2)degrees, V = 1039.2 (4) angstrom3, Z = 2, D(x) = 1.90 g cm-3, lambda(Mo Kalpha) = 0.71069 angstrom, mu = 45.2 cm-1, F(000) = 586, T = 298 K, R = 0.0244 for 1711 unique reflections [I > 3 sigma(I(o))]. The crystal consists of one-dimensional chains of infinite length in which one L-proline ligand bridges two neighboring Er ions, the other L-proline ligand being monodentate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

REL3(RE=Y, La approximately Lu; HL = m-methylbenzoic acid) were synthesized, and their IR spectra were studied. The crystal structures of the complexes of neodymium and terbium were determined by X-ray diffraction method. Both of them crystallize in the monoclinic space group P2(1)/n and show infinite chain structures. The coordination numbers are nine (Nd3+) and eight (Tb3+), respectively.