915 resultados para Infantry drill and tactics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

K-Ar whole-rock ages have been obtained for 30 samples from Sites 782 and 786, Ocean Drilling Program Leg 125 in the Izu-Bonin (Ogasawara) forearc region. They form a trimodal spread of ages between 9 Ma and 44 Ma and are, with a few exceptions, consistent with the inferred lithostratigraphy. The ages have been interpreted in terms of at least two distinct episodes of magmatic and/or hydrothermal activity. A group of ten samples, including the lava flows, gave an isochron age of 41.3 ± 0.5 Ma (middle-late Eocene). This is thought to represent the age of the principal magmatic development of the volcanic forearc basement, and is comparable to published ages on equivalent rocks from other parts of the forearc basement high (e.g., the Ogasawara Islands). It may be significant that this age is slightly younger than the timing of major plate reorganization in the Western Pacific at about 43 Ma. This was followed by a minor episode of intrusive magmatism at 34.6 ± 0.7 Ma (early Oligocene) which appears to have reset the ages of some of the earlier units. This event probably corresponds to the initiation of rifting of the "proto-arc" to form the Parece Vela Basin. Boninitic samples were erupted during both episodes of magmatism, the earlier being of low-Ca boninite type and the later being of medium- and high-Ca types. It is also possible that a third episode of intrusive magmatism affected the Izu-Bonin forearc region at both Sites 782 and 786 at about 17 Ma. This would be consistent with magmatic activity elsewhere in the region during the Miocene, associated with the end of active spreading in the Parece Vela Basin and the start of arc activity in the West Mariana Ridge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Cenozoic sediments sampled in ODP Leg 104 on the Vøring Plateau show a distinct variability of the total organic carbon content (TOC) and the accumulation rates of TOC. Based on the geochemical and organic-petrographic characterization of the sedimentary organic matter (OM), the allochthonous and autochthonous proportion of the OM could be quantified. The results clearly demonstrate that high TOC percentages and TOC accumulation rates in Cenozoic sediment sections display a generally high input of allochthonous organic matter. Oxidized and partly well-rounded organic particles built up the main portion of OM within the Miocene, TOC-rich sediments. The most probable source of this oxidized OM are reworked sediments from the Scandinavian shelf. Changes in the input of these organic particles are to some degree correlative with sea-level changes. The Cenozoic accumulation of autochthonous OM is low and does not reveal a clear variation during the Miocene and early Pliocene. In spite of a high accumulation rate of biogenic opal during the Early Miocene, the accumulation rate of autochthonous TOC is low. The autochthonous particle assemblage is dominated by relatively inert OM, like dinoflagellate cysts. This points to an intensive biological and/or early diagenetic degradation of the marine OM under well oxidized bottom water conditions during the last 23 Myr. Nevertheless, a continuation of marine OM degradation during later stages of diagenesis cannot be excluded. A prominent dominance of allochthonous OM over autochthonous is documented with the beginning of the Pliocene. At 2.45 Ma the episodic occurrence of ice-rafted, thermally mature OM reflects the onset of the glacial erosion of Mesozoic, coal and black shale bearing sediments on the Scandinavian and Barents Sea shelves. The first occurrence of these, in view of the actual burial depth, thermally overmature OM particles is, therefore, a marker for the beginning of the strong Scandinavian glaciation and the advance of the glacial front toward the shelves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The basalts and oceanic andesites from the aseismic Ninetyeast Ridge display trachytic, vesicular and amygdaloidal textures suggesting a subaerial volcanic environment. The normative composition of the Ninetyeast Ridge ranges from olivine picriteto nepheline-normative alkaline basalt, suggesting a wide range of differentiation. This is further supported by the fractionation-differentiation trends displayed by transition metal trace elements (Ni, Cr, V and Cu). The Ninetyeast Ridge rocks are enriched in rare earth (RE) and large ion lithophile (LIL) elements and Sr isotopes (0.7043-0.7049), similar to alkali basalts and tholeiites from seamounts and islands, but different from LIL-element-depleted tholeiitic volcanic rocks of the recent seismic mid-Indian oceanic ridge. The constancy of 87Sr/86Sr ratios for basalts and andesites is compatible with a model involving fractional crystallization of mafic magma. The variation of 87Sr/86Sr ratios between 0.97 and 2.79 may possibly be explained in terms of a primordial hot mantle and/or chemically contrasting heterogeneous mantle source layers relatively undepleted in LIL elements at different periods in the geologic past. In general, the Sr isotopic data for rocks from different tectonic environments are consistent with a "zoning-depletion model" with systematically arranged alternate alkali-poor and alkali-rich layers in the mantle beneath the Indian Ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multi-proxy chronological framework along with sequence-stratigraphic interpretations unveils composite Milankovitch cyclicity in the sedimentary records of the Last GlacialeInterglacial cycle at NE Gela Basin on the Sicilian continental margin. Chronostratigraphic data (including foraminifera-based eco-biostratigraphy and d18O records, tephrochronological markers and 14C AMS radiometric datings) was derived from the shallow-shelf drill sites GeoB14403 (54.6 m recovery) and GeoB14414 (27.5 m), collected with both gravity and drilled MeBo cores in 193 m and 146 m water depth, respectively. The recovered intervals record Marine Isotope Stages and Substages (MIS) from MIS 5 to MIS 1, thus comprising major stratigraphic parts of the progradational deposits that form the last 100-ka depositional sequence. Calibration of shelf sedimentary units with borehole stratigraphies indicates the impact of higher-frequency (20-ka) sea level cycles punctuating this 100-ka cycle. This becomes most evident in the alternation of thick interstadial highstand (HST) wedges and thinner glacial forced-regression (FSST) units mirroring seaward shifts in coastal progradation. Albeit their relatively short-lived depositional phase, these subordinate HST units form the bulk of the 100-ka depositional sequence. Two mechanisms are proposed that likely account for enhanced sediment accumulation ratios (SAR) of up to 200 cm/ka during these intervals: (1) intensified activity of deep and intermediate Levantine Intermediate Water (LIW) associated to the drowning of Mediterranean shelves, and (2) amplified sediment flux along the flooded shelf in response to hyperpycnal plumes that generate through extreme precipitation events during overall arid conditions. Equally, the latter mechanism is thought to be at the origin of undulated features resolved in the acoustic records of MIS 5 Interstadials, which bear a striking resemblance to modern equivalents forming on late-Holocene prodeltas of other Mediterranean shallow-shelf settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Benthic foraminifers of the Coniacian-Santonian through the Paleocene were recovered from a continuous pelagic carbonate section from Hole 516F on the Rio Grande Rise. Sixty-five genera and 153 species have been identified, most of which have been reported from other localities. Bathyal depths are reflected in the benthic assemblages dominated by gavelinellids (Gavelinella beccariiformis, G. velascoensis), Nuttallides truempyi, and various gyroidinids and buliminids. Rapid subsidence during the Coniacian-Santonian from nearshore to upper to middle bathyal depths was followed by much reduced subsidence, with the Campanian-Paleocene interval accumulating at middle bathyal to lower bathyal depths. A census study based on detailed sampling reveals major changes in benthic faunal composition at the Cretaceous/Tertiary boundary transition. It was a time of rapid turnover, with the extinctions of numerous species and the introduction of many new species. Overall, species diversity decreases about 20%, and approximately one-third of latest Maestrichtian species do not survive to the end of the Cretaceous. This shift indicates a significant environmental change in the deep sea, the precise nature of which is not apparent from the foraminifers or their enclosing sediments.