924 resultados para Industry energy
Resumo:
Energy efficiency of buildings is attracting significant attention from the research community as the world is moving towards sustainable buildings design. Energy efficient approaches are measures or ways to improve the energy performance and energy efficiency of buildings. This study surveyed various energy-efficient approaches for commercial building and identifies Envelope Thermal Transfer Value (ETTV) and Green applications (Living wall, Green facade and Green roof) as most important and effective methods. An in-depth investigation was carried out on these energy-efficient approaches. It has been found that no ETTV model has been developed for sub-tropical climate of Australia. Moreover, existing ETTV equations developed for other countries do not take roof heat gain into consideration. Furthermore, the relationship of ETTV and different Green applications have not been investigated extensively in any literature, and the energy performance of commercial buildings in the presence of Living wall, Green facade and Green roof has not been investigated in the sub-tropical climate of Australia. The study has been conducted in two phases. First, the study develops the new formulation, coefficient and bench mark value of ETTV in the presence of external shading devices. In the new formulation, roof heat gain has been included in the integrated heat gain model made of ETTV. In the 2nd stage, the study presents the relationship of thermal and energy performance of (a) Living wall and ETTV (b) Green facade and ETTV (c) Combination of Living wall, Green facade and ETTV (d) Combination of Living wall, Green Roof and ETTV in new formulations. Finally, the study demonstrates the amount of energy that can be saved annually from different combinations of Green applications, i.e., Living wall, Green facade; combination of Living wall and Green facade; combination of Living wall and Green roof. The estimations are supported by experimental values obtained from extensive experiments of Living walls and Green roofs.
Resumo:
In this paper, the influence of the impact energy on the initial fabrication of thin films formed by low energy cluster deposition was investigated by molecular dynamics simulation of All 3 clusters depositing on Ni(0 0 1) substrate. In the case of soft-landing, (0.01 eV/atom), clusters are rearranged from I-h symmetry into fcc-like clusters on the surface. Then they aggregate each other, which result in thin film growing in 3D island mode. While, growth will be in layer-by-layer mode at the impact energy of a few electron volt due to the transient lateral spread of cluster atoms induced by dense collision cascade. This effect has been traced to collision cascade inside the cluster. which is enhanced by collision with a hard Ni substrate. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The deposition of hyperthermal CH3 on diamond (001)-(2×1) surface at room temperature has been studied by means of molecular dynamics simulation using the many-body hydrocarbon potential. The energy threshold effect has been observed. That is, with fixed collision geometry, chemisorption can occur only when the incident energy of CH3 is above a critical value (Eth). Increasing the incident energy, dissociation of hydrogen atoms from the incident molecule was observed. The chemisorption probability of CH3 as a function of its incident energy was calculated and compared with that of C2H2. We found that below 10 eV, the chemisorption probability of C2H2 is much lower than that of CH3 on the same surface. The interesting thing is that it is even lower than that of CH3 on a hydrogen covered surface at the same impact energy. It indicates that the reactive CH3 molecule is the more important species than C2H2 in diamond synthesis at low energy, which is in good agreement with the experimental observation.
Resumo:
In this paper, the collision of a C36, with D6h symmetry, on diamond (001)-(/2×1) surface was investigated using molecular dynamics (MD) simulation based on the semi-empirical Brenner potential. The incident kinetic energy of the C36 ranges from 20 to 150 eV per cluster. The collision dynamics was investigated as a function of impact energy Ein. The C36 cluster was first impacted towards the center of two dimers with a fixed orientation. It was found that when Ein was lower than 30 eV, C36 bounces off the surface without breaking up. Increasing Ein to 30-45 eV, bonds were formed between C36 and surface dimer atoms, and the adsorbed C36 retained its original free-cluster structure. Around 50-60 eV, the C36 rebounded from the surface with cage defects. Above 70 eV, fragmentation both in the cluster and on the surface was observed. Our simulation supported the experimental findings that during low-energy cluster beam deposition small fullerenes could keep their original structure after adsorption (i.e. the memory effect), if Ein is within a certain range. Furthermore, we found that the energy threshold for chemisorption is sensitive to the orientation of the incident C36 and its impact position on the asymmetric surface.
Resumo:
From the early-to-mid 2000s, the Australian horror film production sector has achieved growth and prosperity of a kind not seen since its heyday of the 1980s. Australian horror films can be traced back to the early 1970s, when they experienced a measure of commercial success. However, throughout the twenty-first-century Australian horror gained levels of international recognition that have surpassed the cult status enjoyed by some of the films in the 1970s and 1980s. In recent years, Australia has emerged as a significant producer of breakout, cult, and solid B-grade horror films, which have circulated in markets worldwide. Australian horror’s recent successes have been driven by one of its distinguishing features: its international dimensions. As this chapter argues, the Australian horror film production sector is an export-oriented industry that relies heavily on international partnerships and presales (the sale of distribution rights prior to a film’s completion), and on its relationships with overseas distributors. Yet, these traits vary from film to film as the sector is comprised of several distinct domains of production activity, from guerrilla films destined for niche video markets like specialist cult video stores and online mail-order websites to high(er)-end pictures made for theatrical markets. Furthermore, the content and style of Australian horror movies has often been tailored for export. While some horror filmmakers have sought to play up the Australianness of their product, others have attempted to pass off their films as faux-American or as placeless films effaced of national reference points.
Resumo:
Since the first oil crisis in 1974, economic reasons placed energy saving among the top priorities in most industrialised countries. In the decades that followed, another, equally strong driver for energy saving emerged: climate change caused by anthropogenic emissions, a large fraction of which result from energy generation. Intrinsically linked to energy consumption and its related emissions is another problem: indoor air quality. City dwellers in industrialised nations spend over 90% of their time indoors and exposure to indoor pollutants contributes to ~2.6% of global burden of disease and nearly 2 million premature deaths per year1. Changing climate conditions, together with human expectations of comfortable thermal conditions, elevates building energy requirements for heating, cooling, lighting and the use of other electrical equipment. We believe that these changes elicit a need to understand the nexus between energy consumption and its consequent impact on indoor air quality in urban buildings. In our opinion the key questions are how energy consumption is distributed between different building services, and how the resulting pollution affects indoor air quality. The energy-pollution nexus has clearly been identified in qualitative terms; however the quantification of such a nexus to derive emissions or concentrations per unit energy consumption is still weak, inconclusive and requires forward thinking. Of course, various aspects of energy consumption and indoor air quality have been studied in detail separately, but in-depth, integrated studies of the energy-pollution nexus are hard to come by. We argue that such studies could be instrumental in providing sustainable solutions to maintain the trade-off between the energy efficiency of buildings and acceptable levels of air pollution for healthy living.
Resumo:
Research has long documented the value that design brings to the innovation of products and services. The research landscape has transformed in the last decade and now reflects the value of design as a different way thinking that can be applied to the innovation of business models and catalyst for strategic growth. This paper presents a case study of gathering deep customer insights through a design led innovation approach and reveals industry perspectives and attitudes towards the value of deep customer insights within the context of a leading Australian airport corporation. The findings highlight that the process of gathering deep customer insights encourages a design led approach to testing assumptions and developing stronger customer engagement. The richness of the deep customer insights also provided a bridge to future thought by provoking possible product, service and business innovations which aligned to the airport corporation’s vision. The implications of the study reveal how quantitative market data, which reveals broad sociocultural trends into ‘how’ and ‘what’ customers interact with within an airport, can be strongly validated and built upon through qualitative deep customer insights that explore ‘why’ those choices to interact are made. Future research is then presented which aims to widely disseminate a design led approach to innovation within internal stakeholders of the airport corporation through the development of a digital strategy.
Resumo:
Electricity cost has become a major expense for running data centers and server consolidation using virtualization technology has been used as an important technology to improve the energy efficiency of data centers. In this research, a genetic algorithm and a simulation-annealing algorithm are proposed for the static virtual machine placement problem that considers the energy consumption in both the servers and the communication network, and a trading algorithm is proposed for dynamic virtual machine placement. Experimental results have shown that the proposed methods are more energy efficient than existing solutions.
Resumo:
"The music industry is going through a period of immense change brought about in part by the digital revolution. What is the role of music in the age of computers and the internet? How has the music industry been transformed by the economic and technological upheavals of recent years, and how is it likely to change in the future? This is the first major study of the music industry in the new millennium. Wikström provides an international overview of the music industry and its future prospects in the world of global entertainment. He illuminates the workings of the music industry, and captures the dynamics at work in the production of musical culture between the transnational media conglomerates, the independent music companies and the public." -- back cover Table of Contents Introduction: Music in the Cloud Chapter 1: A Copyright Industry. Chapter 2: Inside the Music Industry Chapter 3: Music and the Media Chapter 4: Making Music - An Industrial or Creative Process Chapter 5: The Social and Creative Music Fan Chapter 6: Future Sounds
Resumo:
This thesis is a study of whether the Australian Clean Energy Package complies with the rules of the World Trade Organization. It examines the legal framework for the Australian carbon pricing mechanism and related arrangements, using World Trade Organization law as the framework for analysis. In doing so, this thesis deconstructs the Clean Energy Package by considering the legal properties of eligible emissions units, the assistance measures introduced by the Package and the liabilities created by the carbon pricing mechanism.
Resumo:
The export market for Australian wine continues to grow at a rapid rate, with imported wines also playing a role in market share in sales in Australia. It is estimated that over 60 per cent of all Australian wine is exported, while 12 per cent of wine consumed in Australia has overseas origins. In addition to understanding the size and direction (import or export) of wines, the foreign locales also play an important role in any tax considerations. While the export market for Australian produced alcohol continues to grow, it is into the Asian market that the most significant inroads are occurring. Sales into China of bottled wine over $7.50 per litre recently overtook the volume sold our traditional partners of the United States and Canada. It is becoming easier for even small to medium sized businesses to export their services or products overseas. However, it is vital for those businesses to understand the tax rules applying to any international transactions. Specifically, one of the first tax regimes that importers and exporters need to understand once they decide to establish a presence overseas is transfer pricing. These are the rules that govern the cross-border prices of goods, services and other transactions entered into between related parties. This paper is Part 2 of the seminar presented on transfer pricing and international tax issues which are particularly relevant to the wine industry. The predominant focus of Part 2 is to discuss four key areas likely to affect international expansion. First, the use of the available transfer pricing methodologies for international related party transactions is discussed. Second, the affects that double tax agreements will have on taking a business offshore are considered. Third, the risks associated with aggressive tax planning through tax information exchange agreements is reviewed. Finally, the paper predicts future ‘trip-wires’ and areas to ‘watch out for’ for practitioners dealing with clients operating in the international arena.
Resumo:
This paper proposes a distributed control approach to coordinate multiple energy storage units (ESUs) to avoid violation of voltage and thermal constraints, which are some of the main power quality challenges for future distribution networks. ESUs usually are connected to a network through voltage source converters. In this paper, both ESU converters active and reactive power are used to deal with the above mentioned power quality issues. ESUs' reactive power is proposed to be used for voltage support, while the active power is to be utilized in managing network loading. Two typical distribution networks are used to apply the proposed method, and the simulated results are illustrated in this paper to show the effectiveness of this approach.
Resumo:
Severe power quality problems can arise when a large number of single-phase distributed energy resources (DERs) are connected to a low-voltage power distribution system. Due to the random location and size of DERs, it may so happen that a particular phase generates excess power than its load demand. In such an event, the excess power will be fed back to the distribution substation and will eventually find its way to the transmission network, causing undesirable voltage-current unbalance. As a solution to this problem, the article proposes the use of a distribution static compensator (DSTATCOM), which regulates voltage at the point of common coupling (PCC), thereby ensuring balanced current flow from and to the distribution substation. Additionally, this device can also support the distribution network in the absence of the utility connection, making the distribution system work as a microgrid. The proposals are validated through extensive digital computer simulation studies using PSCADTM
Resumo:
The Yet Another Workflow Language (YAWL) language and environment has been used to prototype, verify, execute and analyse business processes in a wide variety of industrial domains, such as telephony, construction, supply chain, insurance services, medical environments, personnel management and the creative arts. These engagements offer the YAWL researcher community a great opportunity to validate our research findings within an industry setting, as well as discovery of possible enhancements from the end user perspective. This paper describes three such industry projects, discusses why YAWL was chosen and how it was used in each, and reacts on the insights gained along the way.
Resumo:
Carbon dioxide reforming of methane produces synthesis gas with a low hydrogen to carbon monoxide ratio, which is desirable for many industrial synthesis processes. This reaction also has very important environmental implications since both methane and carbon dioxide contribute to the greenhouse effect. Converting these gases into a valuable feedstock may significantly reduce the atmospheric emissions of CO2 and CH4. In this paper, we present a comprehensive review on the thermodynamics, catalyst selection and activity, reaction mechanism, and kinetics of this important reaction. Recently, research has centered on the development of catalysts and the feasible applications of this reaction in industry. Group VIII metals supported on oxides are found to be effective for this reason. However, carbon deposition causing catalyst deactivation is the major problem inhibiting the industrial application of the CO2/CH4 reaction. Ni-based catalysts impregnated on certain supports show carbon-free operation and thus attract much attention. To develop an effective catalyst for CO2 reforming of CH4 and accelerate the commercial application of the reaction, the following are identified to be the most important areas for future work: (1) selection of metal and support and studying the effect of their interaction on catalyst activity; (2) the effect of different promoter on catalyst activity; (3) the reaction mechanism and kinetics; and (4) pilot reactor performance and scale-up operation.