945 resultados para ION EXCHANGE CHROMATOGRAPHY


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Major episodic acidifications were observed on several occasions in first-order brooks at Acadia National Park, Mount Desert Island, Maine. Short-term declines of up to 2 pH units and 130-mu-eq L-1 acid-neutralizing capacity were caused by HCl from soil solutions, rather than by H2SO4 or HNO3 from precipitation, because (1) SO4 concentrations were constant or decreased during the pH depression, (2) Cl concentrations were greatest at the time of lowest pH, and (3) Na:Cl ratios decreased from values much greater than those in precipitation (a result of chemical weathering), to values equal to or less than those in precipitation. Dilution, increases in NO3 concentrations, or increased export or organic acidity from soils were insufficient to cause the observed decreases in pH. These data represent surface water acidifications due primarily to an ion exchange "salt effect" of Na+ for H+ in soil solution, and secondarily to dilution, neither of which is a consequence of acidic deposition. The requisite conditions for a major episodic salt effect acidification include acidic soils, and either an especially salt-laden wet precipitation event, or a period of accumulation of marine salts from dry deposition, followed by wet inputs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An experimental short-term acidification with HCl at a first-order stream in central Maine, USA was used to study processes controlling the changes in stream chemistry and to assess the ability of stream substrate to buffer pH. The streambed exerted a strong buffering capacity against pH change by ion exchange during the 6-hour acidification. Streambed substrates had substantial cation and anion exchange capacity in the pH range of 4.1 to 6.5. The ion exchange for cations and SO42- were rapid and reversible. The speed of release of cations from stream substrates was Na1+ > Ca2+ > Mg2+ > Aln+ > Be2+, perhaps relating to charge density of these cations. Ca2+ desorption dominated neutralisation of excess H+ for the first 2 hr. As the reservoir of exchangeable Ca diminished, desorption land possibly dissolution) of Al3+ became the dominant neutralising mechanism. The exchangeable land possibly soluble) reservoir of Al was not depleted during the 6-hour acidification. Sulphate adsorption during the acidification reduced the concentration of SO42- in stream water by as much as 20 mu eq L-1 (from 70 mu eq L-1). Desorption of SO42- and adsorption of base cat ions after the artificial acidification resulted in a prolongation of the pH depression. The streambed had the capacity to buffer stream water chemistry significantly during an acidifying event affecting the entire upstream catchment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of rotating ring–disk electrodes as generator-collector systems has so far been limited to the detection of Faradaic currents at the ring. As opposed to other generator-collector configurations, non-Faradaic detection has not yet been carried out with rotating ring–disk electrodes. In this study, a.c. perturbation based detection for measurement of the ring impedance is introduced. By using a conducting polymer-modified disk electrode in combination with a bare gold ring as a model, it is shown that the measured ring capacitance correlates with the polarization of the polymer film, most probably due to counter-ion exchange. A method of calculating the ring capacitance based on a small-signal sinusoid perturbation is described and the most important instrumental limitations are identified.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The double-stranded RNA (dsRNA) activated protein kinase, PKR, is one of the several enzymes induced by interferons and a key molecule mediating the antiviral effects of interferons. PKR contain an N-terminal, double-stranded RNA binding domain (dsRBD), which has two tandem copies of the motifs (dsRBM I and dsRBM II). Upon binding to viral dsRNA, PKR is activated via autophosphorylation. Activated PKR has several substrates; one of the examples is eukaryotic translation initiation factor 2 (eIF2a). The phosphorylation of eIF2a leads to the termination of cell growth by inhibiting protein synthesis in response to viral infection. The objective of this project was to characterize the dsRBM I and define the dsRNA binding using biophysical methods. First, the dsRBM I gene was cloned from a pET-28b to a pET-11a expression plasmid. N-terminal poly-histidine tags on pET-28b are for affinity purification; however, these tags can alter the structure and function of proteins, thus the gene of dsRBM I was transferred into the plasmid without tags (pET-11a) and expressed as a native protein. The dsRBM I was transformed into and expressed by Rosetta DE3plyS expression cells. Purification was done by FPLC using a Sepharose IEX ion exchange followed by Heparin affinity column; yielding pure protein was assayed by PAGE. Analytical Ultracentrifugation, Sedimentation Velocity, was used to characterize free solution association state and hydrodynamic properties of the protein. The slight decrease in S-value with concentration is due to the hydrodynamic non-ideality. No self association was observed. The obtained molecule weight was 10,079 Da. The calculated sedimentation constant at zero concentration at 20°C in water was 1.23 and its friction coefficient was 3.575 ´ 10-8. The frictional ratio of sphere and dsRBM I became 1.30. Therefore, dsRBM I must be non-globular and more asymmetric shape. Isolated dsRBM I exhibits the same tertiary fold as compared to context in the full domain but it exhibited weaker binding affinity than full domain to a 20 bp dsRNA. However, when the conditions allowed for its saturation, dsRBM I to 20 bp dsRNA has similar stoichiometry as full dsRBD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Paracrine motogenic factors, including motility cytokines and extracellular matrix molecules secreted by normal cells, can stimulate metastatic cell invasion. For extracellular matrix molecules, both the intact molecules and the degradative products may exhibit these activities, which in some cases are not shared by the intact molecules. We found that human peritumoral and lung fibroblasts secrete motility-stimulating activity for several recently established human sarcoma cell strains. The motility of lung metastasis-derived human SYN-1 sarcoma cells was preferentially stimulated by human lung and peritumoral fibroblast motility-stimulating factors (FMSFs). FMSFs were nondialyzable, susceptible to trypsin, and sensitive to dithiothreitol. Cycloheximide inhibited accumulation of FMSF activity in conditioned medium; however, addition of cycloheximide to the migration assay did not significantly affect motility-stimulating activity. Purified hepatocyte growth factor/scatter factor (HGF/SF), rabbit anti-hHGF, and RT-PCR analysis of peritumoral and lung fibroblast HGF/SF mRNA expression indicated that FMSF activity was unrelated to HGF/SF. Partial purification of FMSF by gel exclusion chromatography revealed several peaks of activity, suggesting multiple FMSF molecules or complexes.^ We purified the fibroblast motility-stimulating factor from human lung fibroblast-conditioned medium to apparent homogeneity by sequential heparin affinity chromatography and DEAE anion exchange chromatography. Lysylendopeptidase C digestion of FMSF and sequencing of peptides purified by reverse phase HPLC after digestion identified it as an N-terminal fragment of human fibronectin. Purified FMSF stimulated predominantly chemotaxis but chemokinesis as well of SYN-1 sarcoma cells and was chemotactic for a variety of human sarcoma cells, including fibrosarcoma, leiomyosarcoma, liposarcoma, synovial sarcoma and neurofibrosarcoma cells. The motility-stimulating activity present in HLF-CM was completely eliminated by either neutralization or immunodepletion with a rabbit anti-human-fibronectin antibody, thus further confirming that the fibronectin fragment was the FMSF responsible for the motility stimulation of human soft tissue sarcoma cells. Since human soft tissue sarcomas have a distinctive hematogenous metastatic pattern (predominantly lung), FMSF may play a role in this process. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

IL-24 is an unusual member of the IL-10 family, which is considered a Th1 cytokine that exhibits tumor cell cytotoxicity. I describe the purification of this novel cytokine from the supernatant of IL-24 gene transfected human embryonic kidney cells and define the biochemical and functional properties of the soluble, human IL-24 protein. ^ I showed IL-24 non-covalently associates with bovine albumin. Immunoaffinity purification followed by cation exchange chromatography resulted in the significant enrichment of N-glycosylated IL-24. This protein elicited dose-dependent secretion of TNF-α and IL-6 from purified human monocytes and TNF-α secretion from PMA differentiated U937 cells. I showed this same protein was cytotoxic to melanoma tumor cells via the induction of IFN-α. ^ I reported IL-24 associates as at least two disulfide linked, N-glycosylated dimers. Enzymatic removal of N-linked-glycosylation from purified IL-24 partially diminished its cytokine and cytotoxic functions. Disruption of IL-24 dimers via reduction and alkylation of intermolecular disulfide bonds nearly abolished IL-24s cytokine function. ^ I elucidated IL-24 induced TNF-α secretion was pSTAT1, pSTAT3 as well as the class II heterodimeric receptors IL-20R1/IL-22R2 independent. I identified a requirement for the heterodimer of Toll-like Receptors 1 and 2 for IL-24s cytokine function and show a physical interaction between IL-24 and the extracellular domain of TLR-1. ^ Thus, I demonstrated that purified N-glycosylated, soluble, dimeric, human IL-24 exhibits both immunomodulatory and anti-cancer activities and these functions remain associated during purification. IL-24 induced TNF-α secretion required an interaction with the heterodimeric receptor TLR-1/2 and IL-24s cytotoxic affect to melanoma tumor cells was in part due to its induction of IFN-β. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This is the twenty-second of a series of symposia devoted to talks and posters by students about their biochemical engineering research. The first, third, fifth, ninth, twelfth, sixteenth, and twenti~th were hosted by Kansas State University, the second and fourth by the University of Nebraska- Lincoln, the sixth, seventh, tenth, thirteenth, seventeenth, and twenty-second by Iowa State University, the eighth, fourteenth, and nineteenth by the University of Missouri-Columbia, the eleventh, fifteenth, and twenty-first by Colorado State University, and the eighteenth by the University of Colorado. Next year's symposium will be at the University of Oklahoma. Symposium proceedings are edited and issued by faculty of the host institution. Because final publication usually takes place in refereed journals, articles included here are brief and often cover work in progress. ContentsC. A. Baldwin, J.P. McDonald, and L. E. Erickson, Kansas State University. Effect of Hydrocarbon Phase on Kinetic and Transport Limitations for Bioremediation of Microporous Soil J. C. Wang, S. K. Banerji, and Rakesh Bajpai, University of Missouri-Columbia. Migration of PCP in Soil-Columns in Presence of a Second Organic Phase Cheng-Hsien Hsu and Roger G. Harrison, University of Oklahoma. Bacterial Leaching of Zinc and Copper from Mining Wastes James A. Searles, Paul Todd, and Dhinakar S. Kompala, University of Colorado. Suspension Culture of Chinese Hamster Ovary Cells Utilizing Inclined Sedimentation Ron Beyerinck and Eric H. Dunlop, Colorado State University. The Effect of Feed Zone Turbulence as Measured by Laser Doppler Velocimetry on Baker's Yeast Metabolism in a Chemostat Paul Li-Hong Yeh, GraceY. Sun, Gary A. Weisman, and Rakesh Bajpai, University of Missouri-Columbia. Effect of Medium Constituents upon Membrane Composition of Insect Cells R. Shane Gold, M. M. Meagher, R. Hutkins, and T. Conway, University of Nebraska-Lincoin. Ethanol Tolerance and Carbohydrate Metabolism in Lactobacilli John Sargantanis and M. N. Karim, Colorado State University. Application of Kalman Filter and Adaptive Control in Solid Substrate Fermentation D. Vrana, M. Meagher, and R. Hutkins, University of Nebraska-Lincoln. Product Recovery Optimization in the ABE Fermentation Kalyan R. Tadikonda and Robert H. Davis, University of Colorado. Cell Separations Using Targeted Monoclonal Antibodies Against Surface Proteins Meng H. Heng and Charles E. Glatz, Iowa State University. Charged Fusion for Selective Recovery of B-Galactosidase from Cell Extract Using Hollow Fiber Ion-Exchange Membrane Adsorption Hsiu-Mei Chen, Peter J. Reilly, and Clark Ford, Iowa State University. Site-Directed Mutagenesis to Enhance Thermostability of Glucoamylase from Aspergillus: A Rational Approach P. Tuitemwong, L. E. Erickson, and D. Y. C. Fung, Kansas State University. Applications of Enzymatic Hydrolysis and Fermentation on the Reduction of Flatulent Sugars in the Rapid Hydration Hydrothermal Cooked Soy Milk Sanjeev Redkar and Robert H. Davis, University of Colorado. Crossflow Microfiltration of Yeast Suspensions Linda Henk and James C. Linden, Colorado State University, and Irving C. Anderson, Iowa State University. Evaluation of Sorghum Ensilage as an Ethanol Feedstock Marc Lipovitch and James C. Linden, Colorado State University. Stability and Biomass Feedstock Pretreatability for Simultaneous Saccharification and Fermentation Ali Demirci, Anthony L. Pometto Ill, and Kenneth E. Johnson, Iowa State University. Application of Biofilm Reactors in Lactic Acid Fermentation Michael K. Dowd, Peter I. Reilly, and WalterS. Trahanovsky, Iowa State University. Low Molecular-Weight Organic Composition of Ethanol Stillage from Corn Craig E. Forney, Meng H. Heng, John R. Luther, Mark Q. Niederauer, and Charles E. Glatz, Iowa State University. Enhancement of Protein Separation Using Genetic Engineering J. F. Shimp, J. C. Tracy, E. Lee, L. C. Davis, and L. E. Erickson, Kansas State University. Modeling Contaminant Transport, Biodegradation and Uptake by Plants in the Rhizosphere Xiaoqing Yang, L. E. Erickson, and L. T. Fan, Kansas State University. Modeling of Dispersive-Convective Characteristics in Bioremediation of Contaminated Soil Jan Johansson and Rakesh Bajpai, University of Missouri-Columbia. Fouling of Membranes J. M. Wang, S. K. Banerji, and R. K. Bajpai, University of Missouri-Columbia. Migration of Sodium-Pentachorophenol (Na-PCP) in Unsaturated and Saturated Soil-Columns J. Sweeney and M. Meagher, University of Nebraska-Lincoln. The Purification of Alpha-D-Glucuronidase from Trichoderma reesei

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents chlorine stable isotope compositions (delta37Cl) of sediment pore waters collected by squeezing sediment cores from the sediment-basement interface along an East-West transect through the eastern flank of the Juan de Fuca Ridge (ODP Leg 168). These "near basement fluids" (NBF) are generally thought to be representative of low-temperature fluids circulating in the off-axis basaltic crust. The delta37Cl value of the fluid directly sampled from a flow at the base of Site 1026 (WSTP1026) is also reported. NBF display delta37Cl values between -2.09? and -0.12? relative to the Standard Mean Ocean Chloride (SMOC defined as 0?) and small variations in chlorinity (~4%). These data contrast with the homogeneity of delta37Cl values associated with highly variable chlorinities observed in high-temperature on-axis fluids [Bonifacie et al., 2005, doi:10.1016/j.chemgeo.2005.06.008]. The NBF delta37Cl values show a general decreasing trend with distance from the ridge-axis except for two fluids. When plotted against delta18O values, the delta37Cl of the NBF show two different trends. This paper discusses the possible contributions on NBF delta37Cl values of fluid-mixing, water-rock interactions and transport processes (diffusion, ion membrane filtration) that can occur in the igneous basement. However, as none of these processes can fully explain the observed delta37Cl variations, the potential effect of the sediment cover is also investigated. At site 1026, the interstitial pore fluid displays a delta37Cl signature significantly lower than that of the fluid discharge sample (-1.90? and -0.28?, respectively). This difference, demonstrated here cannot be an artifact of the sampling method, rather indicates the influence of the sediment cover on NBF delta37Cl values. The potential contributions of physical processes associated with transport/compaction (e.g., diffusion, ion membrane filtration, adsorption, ion exchange) on NBF delta37Cl values are qualitatively discussed here but require additional studies for further insights. However, this study indicates that "near basement fluids" (NBF) are not, at least for Cl isotopic compositions, necessarily as representative of fluids circulating in the basaltic crust as initially thought. These results add new constraints on Cl geodynamics and show that Cl-isotopes fractionate during low-temperature circulation of fluids in off-axis and off-margin flow contexts, but not to the extent observed for active margins. Fluids circulating at low-temperature in the magmatic and/or the sedimentary part of the oceanic crust might have played a major role on the delta37Cl evolution of seawater over geologic time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The distribution of Li isotopes in pore waters to a depth of 1157 m below seafloor is presented for ODP Sites 918 and 919 in the Irminger Basin, offshore Greenland. Lithium isotope data are accompanied by strontium isotope ratios to decipher diagenetic reactions in the sediments which are characterized by the pervasive presence of volcanic material, as well as by very high accumulation rates in the upper section. The lowering of the 87Sr/86Sr ratio below contemporaneous seawater values indicates several zones of volcanic material alteration. The Li isotope profiles are complex suggesting a variety of exchange reactions with the solid phases. These include cation exchange with NH4+ and mobilization from sediments at depth, in addition to the alteration of volcanic matter. Lithium isotopes are, therefore, a sensitive indicator of sediment-water interaction. d6Li values of pore waters at these two sites vary between -42 and -25?. At shallow depths (<100 mbsf), rapid decreases in the Li concentration, accompanied by a shift to heavier isotopic compositions, indicate uptake of Li into alteration products. A positive anomaly of d6Li observed at both sites is coincident with the NH4+ maximum produced by organic matter decomposition and may be related to ion exchange of Li from the sediments by NH4+. In the lower sediment column at Site 918, dissolved Li increases with depth and is characterized by enrichment of 6Li. The Li isotopic compositions of both the waters and the solid phase suggest that the enrichment of Li in deep interstitial waters is a result of release from pelagic sediments. The significance of sediment diagenesis and adsorption as sinks of oceanic Li is evaluated. The maximum diffusive flux into the sediment due to volcanic matter alteration can be no more than 5% of the combined inputs from rivers and submarine hydrothermal solutions. Adsorption on to sediments can only account for 5-10% of the total inputs from rivers and submarine hot springs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigated minor element ratios (Sr/Ca and Mg/Ca) in bulk sediment samples from Sites 803-807 using a recently optimized sample treatment protocol for calcium-carbonate-rich sediments consisting of sequential reductive and ion exchange treatments. We evaluated this protocol relative to bulk sediment leaching using samples from Sites 804 and 806, the two end-member sites in the depth transect, reporting as well Mn/Ca and Fe/Ca ratios for sediments from these two sites processed by means of both methods. The Sr/Ca ratios were only slightly affected by the sample treatment, with an average reduction of 6%-7% caused primarily by the ion exchange step. The reductive sample treatment, designed to be effective at removing Mn-rich oxyhydroxides, has a major effect on Mg/Ca ratios, with up to 50% reduction, whereas little effect occurred in ion exchange alone on Mg/Ca ratios. The Mn/Ca and Fe/Ca ratios were not consistently offset by the sample treatment, and these ratios do not appear to be representative of calcite geochemistry reflecting either ocean history or diagenetic overprinting. Celestite solubility appears to be an important control on interstitial water Sr concentrations in these sites, and it must be considered when constructing Sr mass balance models of calcite recrystallization. Calcite Sr/Ca ratios (range 1-2 mmol/mol) are similar from site to site when plotted vs. age, with a pattern comparable to that for well-preserved foraminifer tests over the past 40 Ma. Interstitial water Mg and Ca gradients appear to reflect basement character and the intensity of alteration; they can vary substantially over a small area. Calcite Mg/Ca ratios (range 1.5-4.5 mmol/mol) differ from site to site, with generally higher ratios for sites at a shallower water depth. Increasing calcite Mg/Ca ratios correlate with decreasing Sr/Ca ratios in the treated samples. No consistent pattern exists for calcite Mg/Ca ratios vs. age or depth, nor is any direct correlation to interstitial water Mg/Ca ratios present.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Observations of hummock and string-like microrelief features were made in High Arctic hydric meadows. Thermal shearing of thick bryophyte mats, and subsequent roll back during spring flooding appears to be one way in which this topography is formed. Hummocky and non-hummocky (flat) meadows show distinct floristic differences which may in part be due to observed differences in temperature, nutrient concentrations and moisture relations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two trenches off Japan were explored during DSDP Leg 87. One is the Nankai Trough and the other is the Japan Trench; Site 582 is located on the floor of the former and Site 584 is situated on the deep-sea terrace of the latter. Cores from Site 582 and 584 consist mainly of hemipelagic sediments and diatomaceous silts and mudstone, respectively. In this report we analyze the chemistry of the interstitial water and sediments, as well as the sediment mineralogy. Sulfate reduction is accompanied by the production of secondary pyrite, which is rich in the sediment at both sites. Dissolved Ca concentration is relatively low and changes only slightly at both sites, probably because of the formation of carbonate with high alkalinity. Concentrations of dissolved Mg decrease with depth at Site 584. The dissolved Mg depletion probably results from the formation of Mg-rich carbonate and/or ion exchange and reaction between interstitial water and clay minerals. Higher Si/Al values are due to biogenic opal in the sediments and roughly correlate with higher values of interstitial water SiO2. Increases in dissolved Li concentrations may be related to its release from clay minerals, to advection that results from dewatering, and/or to fluid transport.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Studies of interstitial waters obtained from DSDP Leg 64 drill sites in the Gulf of California have revealed information both on early diagenetic processes in the sediments resulting from the breakdown of organic matter and on hydrothermal interactions between sediments and hot doleritic sill intrusions into the sediments. In all the sites drilled sulfate reduction occurred as a result of rapid sediment accumulation rates and of relatively high organic carbon contents; in most sites methane production occurred after sulfate depletion. Associated with this methane production are high values of alkalinity and high concentrations of dissolved ammonia, which causes ion exchange processes with the solid phases leading to intermediate maxima in Mg++, K+, Rb+, and Sr++(?). Though this phenomenon is common in Leg 64 drill sites, these concentration reversals had been noticed previously only in Site 262 (Timor Trough) and Site 440 (Japan Trench). Penetrating, hot dolerite sills have led to substantial hydrothermal alteration in sediments at sites drilled in the Guaymas Basin. Site 477 is an active hydrothermal system in which the pore-water chemistry typically shows depletions in sulfate and magnesium and large increases in lithium, potassium, rubidium, calcium, strontium, and chloride. Strontium isotope data also indicate large contributions of volcanic matter and basalt to the pore-water strontium concentrations. At Sites 478 and 481 dolerite sill intrusions have cooled to ambient temperatures but interstitial water concentrations of Li+, Rb+, Sr++ , and Cl- show the gradual decay of a hydrothermal signal that must have been similar to the interstitial water chemistry at Site 477 at the time of sill intrusion. Studies of oxygen isotopes of the interstitial waters at Site 481 indicate positive values of d18O (SMOW) as a result of high-temperature alteration reactions occurring in the sills and the surrounding sediments. A minimum in dissolved chloride at about 100-125 meters sub-bottom at Sites 478, 481, and particularly Site 479 records a possible paleosalinity signal, associated with an event that substantially lowered salinities in the inner parts of the Gulf of California during Quaternary time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interstitial water chemistry has proved to be a sensitive indicator for early diagenetic reactions, particularly those related to organic matter oxidation. Downhole chemical variations in the pore waters from Deep Sea Drilling Project Holes 496 and 497 on the Middle America Trench slope off Guatemala are anomalous because both salinity and chlorinity show strong decreases to half the values of seawater, and d18O values become positive (maximum of about +2.5% at the bottom of the holes). These observations are explained in terms of dilution of pore waters after retrieval as a result of decomposition of the gas hydrates before removal of pore waters by shipboard squeezing techniques. In all holes, except Hole 495 (drilled in pelagic sediments), decomposition of organic matter leads to rapid sulfate depletion and subsequent methane generation. Associated with methane generation are large increases in alkalinity and dissolved ammonia. The latter component causes ion exchange reactions with clay minerals, which results in maxima in magnesium and perhaps potassium. At greater depths, as yet unidentified reactions cause the removal of magnesium. Especially in the deeper Trench Sites 499 and 500, rapid variations in calcium, magnesium, and alkalinity occur in turbidite sequences.