980 resultados para INTERSTELLAR DUST


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ion implantation experiments were carried out on amorphous (30 K) and crystalline (80 K) solid CO2 using both reactive (D+, H+) and non-reactive (He+) ions, simulating different irradiation environments on satellite and dust grain surfaces. Such ion irradiation synthesized several new species in the ice including ozone (O-3), carbon trioxide (CO3), and carbon monoxide (CO) the main dissociation product of carbon dioxide. The yield of these products was found to be strongly dependent upon the ion used for irradiation and the sample temperature. Ion implantation changes the chemical composition of the ice with recorded infrared spectra clearly showing the coexistence of D-3h and C-2v isomers of CO3, for the first time, in ion irradiated CO2 ice. (C) 2013 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first regional synthesis of long-term (back to similar to 25 years at some stations) primary data (from direct measurement) on aerosol optical depth from the ARFINET (network of aerosol observatories established under the Aerosol Radiative Forcing over India (ARFI) project of Indian Space Research Organization over Indian subcontinent) have revealed a statistically significant increasing trend with a significant seasonal variability. Examining the current values of turbidity coefficients with those reported similar to 50 years ago reveals the phenomenal nature of the increase in aerosol loading. Seasonally, the rate of increase is consistently high during the dry months (December to March) over the entire region whereas the trends are rather inconsistent and weak during the premonsoon (April to May) and summer monsoon period (June to September). The trends in the spectral variation of aerosol optical depth (AOD) reveal the significance of anthropogenic activities on the increasing trend in AOD. Examining these with climate variables such as seasonal and regional rainfall, it is seen that the dry season depicts a decreasing trend in the total number of rainy days over the Indian region. The insignificant trend in AOD observed over the Indo-Gangetic Plain, a regional hot spot of aerosols, during the premonsoon and summer monsoon season is mainly attributed to the competing effects of dust transport and wet removal of aerosols by the monsoon rain. Contributions of different aerosol chemical species to the total dust, simulated using Goddard Chemistry Aerosol Radiation and Transport model over the ARFINET stations, showed an increasing trend for all the anthropogenic components and a decreasing trend for dust, consistent with the inference deduced from trend in Angstrom exponent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Filamentary structures are ubiquitous in astrophysics and are observed at various scales. On a cosmological scale, matter is usually distributed along filaments, and filaments are also typical features of the interstellar medium. Within a cosmic filament, matter can contract and form galaxies, whereas an interstellar gas filament can clump into a series of bead-like structures that can then turn into stars. To investigate the growth of such instabilities, we derive a local dispersion relation for an idealized self-gravitating filament and study some of its properties. Our idealized picture consists of an infinite self-gravitating and rotating cylinder with pressure and density related by a polytropic equation of state. We assume no specific density distribution, treat matter as a fluid, and use hydrodynamics to derive the linearized equations that govern the local perturbations. We obtain a dispersion relation for axisymmetric perturbations and study its properties in the (kR, kz) phase space, where kR and kz are the radial and longitudinal wavenumbers, respectively. While the boundary between the stable and unstable regimes is symmetrical in kR and kz and analogous to the Jeans criterion, the most unstable mode displays an asymmetry that could constrain the shape of the structures that form within the filament. Here the results are applied to a fiducial interstellar filament, but could be extended for other astrophysical systems, such as cosmological filaments and tidal tails.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal decomposition of propargyl alcohol (C3H3OH), a molecule of interest in interstellar chemistry and combustion, was investigated using a single pulse shock tube in the temperature ranging from 953 to 1262 K. The products identified include acetylene, propyne, vinylacetylene, propynal, propenal, and benzene. The experimentally observed overall rate constant for thermal decomposition of propargyl alcohol was found to be k = 10((10.17 +/- 0.36)) exp(-39.70 +/- 1.83)/RT) s(-1) Ab initio theoretical calculations were carried out to understand the potential energy surfaces involved in the primary and secondary steps of propargyl alcohol thermal decomposition. Transition state theory was used to predict the rate constants, which were then used and refined in a kinetic simulation of the product profile. The first step in the decomposition is C-O bond dissociation, leading to the formation of two important radicals in combustion, OH and propargyl. This has been used to study the reverse OH propargyl radical reaction, about which there appears to be no prior work. Depending on the site of attack, this reaction leads to propargyl alcohol or propenal, one of the major products at temperatures below 1200 K. A detailed mechanism has been derived to explain all the observed products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using idealized one-dimensional Eulerian hydrodynamic simulations, we contrast the behaviour of isolated supernovae with the superbubbles driven by multiple, collocated supernovae. Continuous energy injection via successive supernovae exploding within the hot/dilute bubble maintains a strong termination shock. This strong shock keeps the superbubble over-pressured and drives the outer shock well after it becomes radiative. Isolated supernovae, in contrast, with no further energy injection, become radiative quite early (less than or similar to 0.1Myr, tens of pc), and stall at scales less than or similar to 100 pc. We show that isolated supernovae lose almost all of their mechanical energy by 1 Myr, but superbubbles can retain up to similar to 40 per cent of the input energy in the form of mechanical energy over the lifetime of the star cluster (a few tens of Myr). These conclusions hold even in the presence of realistic magnetic fields and thermal conduction. We also compare various methods for implementing supernova feedback in numerical simulations. For various feedback prescriptions, we derive the spatial scale below which the energy needs to be deposited in order for it to couple to the interstellar medium. We show that a steady thermal wind within the superbubble appears only for a large number (greater than or similar to 10(4)) of supernovae. For smaller clusters, we expect multiple internal shocks instead of a smooth, dense thermalized wind.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aerosol mass concentrations over several Indian regions have been simulated using the online chemistry transport model, WRF-Chem, for two distinct seasons of 2011, representing the pre-monsoon (May) and post-monsoon (October) periods during the Indo-US joint experiment `Ganges Valley Aerosol Experiment (GVAX)'. The simulated values were compared with concurrent measurements. It is found that the model systematically underestimates near-surface BC mass concentrations as well as columnar Aerosol Optical Depths (AODs) from the measurements. Examining this in the light of the model-simulated meteorological parameters, we notice the model overestimates both planetary boundary layer height (PBLH) and surface wind speeds, leading to deeper mixing and dispersion and hence lower surface concentrations of aerosols. Shortcoming in simulating rainfall pattern also has an impact through the scavenging effect. It also appears that the columnar AODs are influenced by the unrealistic emission scenarios in the model. Comparison with vertical profiles of BC obtained from aircraft-based measurements also shows a systematic underestimation by the model at all levels. It is seen that concentration of other aerosols, viz., dust and sea-salt are closely linked with meteorological conditions prevailing over the region. Dust is higher during pre-monsoon periods due to the prevalence of north-westerly winds that advect dust from deserts of west Asia into the Indo-Gangetic plain. Winds and rainfall influence sea-salt concentrations. Thus, the unrealistic simulation of wind and rainfall leads to model simulated dust and sea-salt also to deviate from the real values; which together with BC also causes underperformance of the model with regard to columnar AOD. It appears that for better simulations of aerosols over Indian region, the model needs an improvement in the simulation of the meteorology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gas discharge plasmas used for thinfilm deposition by plasma-enhanced chemical vapor deposition (PECVD) must be devoid of contaminants, like dust or active species which disturb the intended chemical reaction. In atmospheric pressure plasma systems employing an inert gas, the main source of such contamination is the residual air inside the system. To enable the construction of an atmospheric pressure plasma (APP) system with minimal contamination, we have carried out fluid dynamic simulation of the APP chamber into which an inert gas is injected at different mass flow rates. On the basis of the simulation results, we have designed and built a simple, scaled APP system, which is capable of holding a 100 mm substrate wafer, so that the presence of air (contamination) in the APP chamber is minimized with as low a flow rate of argon as possible. This is examined systematically by examining optical emission from the plasma as a function of inert gas flow rate. It is found that optical emission from the plasma shows the presence of atmospheric air, if the inlet argon flow rate is lowered below 300 sccm. That there is minimal contamination of the APP reactor built here, was verified by conducting an atmospheric pressure PECVD process under acetylene flow, combined with argon flow at 100 sccm and 500 sccm. The deposition of a polymer coating is confirmed by infrared spectroscopy. X-ray photoelectron spectroscopy shows that the polymer coating contains only 5% of oxygen, which is comparable to the oxygen content in polymer deposits obtained in low-pressure PECVD systems. (C) 2015 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The collocated measurements of aerosols size distribution (ASD) and aerosol optical thickness (AOT) are analyzed simultaneously using Grimm aerosol spectrometer and MICROTOP II Sunphotometer over Jaipur, capital of Rajasthan in India. The contrast temperature characteristics during winter and summer seasons of year 2011 are investigated in the present study. The total aerosol number concentration (TANC, 0.3-20 mu m) during winter season was observed higher than in summer time and it was dominated by fine aerosol number concentration (FANC < 2 mu m). Particles smaller than 0.8 mu m (at aerodynamic size) constitute similar to 99% of all particles in winter and similar to 90% of particles in summer season. However, particles greater than 2 mu m contribute similar to 3% and similar to 0.2% in summer and winter seasons respectively. The aerosols optical thickness shows nearly similar AOT values during summer and winter but corresponding low Angstrom Exponent (AE) values during summer than winter, respectively. In this work, Potential Source Contribution Function (PSCF) analysis is applied to identify locations of sources that influenced concentrations of aerosols over study area in two different seasons. PSCF analysis shows that the dust particles from That Desert contribute significantly to the coarse aerosol number concentration (CANC). Higher values of the PSCF in north from Jaipur showed the industrial areas in northern India to be the likely sources of fine particles. The variation in size distribution of aerosols during two seasons is clearly reflected in the log normal size distribution curves. The log normal size distribution curves reveals that the particle size less than 0.8 pm is the key contributor in winter for higher ANC. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multi-year observations from the network of ground-based observatories (ARFINET), established under the project `Aerosol Radiative Forcing over India' (ARFI) of Indian Space Research Organization and space-borne lidar `Cloud Aerosol Lidar with Orthogonal Polarization' (CALIOP) along with simulations from the chemical transport model `Goddard Chemistry Aerosol Radiation and Transport' (GOCART), are used to characterize the vertical distribution of atmospheric aerosols over the Indian landmass and its spatial structure. While the vertical distribution of aerosol extinction showed higher values close to the surface followed by a gradual decrease at increasing altitudes, a strong meridional increase is observed in the vertical spread of aerosols across the Indian region in all seasons. It emerges that the strong thermal convections cause deepening of the atmospheric boundary layer, which although reduces the aerosol concentration at lower altitudes, enhances the concentration at higher elevations by pumping up more aerosols from below and also helping the lofted particles to reach higher levels in the atmosphere. Aerosol depolarization ratios derived from CALIPSO as well as the GOCART simulations indicate the dominance of mineral dust aerosols during spring and summer and anthropogenic aerosols in winter. During summer monsoon, though heavy rainfall associated with the Indian monsoon removes large amounts of aerosols, the prevailing southwesterly winds advect more marine aerosols over to landmass (from the adjoining oceans) leading to increase in aerosol loading at lower altitudes than in spring. During spring and summer months, aerosol loading is found to be significant, even at altitudes as high as 4 km, and this is proposed to have significant impacts on the regional climate systems such as Indian monsoon. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-term (2009-2012) data from ground-based measurements of aerosol black carbon (BC) from a semi-urban site, Pantnagar (29.0 degrees N, 79.5 degrees E, 231 m amsl), in the Indo-Gangetic Plain (IGP) near the Himalayan foothills are analyzed to study the regional characterization. Large variations are seen in BC at both diurnal and seasonal scales, associated with the mesoscale and synoptic meteorological processes, and local/regional anthropogenic activities. BC diurnal variations show two peaks (morning and evening) arising from the combined effects of the atmospheric boundary layer (ABL) dynamics and local emissions. The diurnal amplitudes as well as the rates of diurnal evolution are the highest in winter season, followed by autumn, and the lowest in summer-monsoon. BC exhibits nearly an inverse relation with mixing layer depth in all seasons; being strongest in winter (R-2 = 0.89) and weakest (R-2 = 0.33) in monsoon (July-August). Unlike BC, co-located aerosol optical depths (AOD) and aerosol absorption are highest in spring over IGP, probably due to the presence of higher abundances of aerosols (including dust) above the ABL (in the free troposphere). AOD (500 nm) showed annual peak (>0.6) in May-June, dominated by coarse mode, while fine mode aerosols dominated in late autumn and early winter. Aerosols profiles from CALIPSO show highest values close to the surface in winter/autumn, similar to the feature seen in surface BC, whereas at altitudes > 2 km, the extinction is maximum in spring/summer. WRF-Chem model is used to simulate BC temporal variations and then compared with observed BC. The model captures most of the important features of the diurnal and seasonal variations but significantly underestimated the observed BC levels, suggesting improvements in diurnal and seasonal varying BC emissions apart from the boundary layer processes. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aerosol loading over the South Asian region has the potential to affect the monsoon rainfall, Himalayan glaciers and regional air-quality, with implications for the billions in this region. While field campaigns and network observations provide primary data, they tend to be location/season specific. Numerical models are useful to regionalize such location-specific data. Studies have shown that numerical models underestimate the aerosol scenario over the Indian region, mainly due to shortcomings related to meteorology and the emission inventories used. In this context, we have evaluated the performance of two such chemistry-transport models: WRF-Chem and SPRINTARS over an India-centric domain. The models differ in many aspects including physical domain, horizontal resolution, meteorological forcing and so on etc. Despite these differences, both the models simulated similar spatial patterns of Black Carbon (BC) mass concentration, (with a spatial correlation of 0.9 with each other), and a reasonable estimates of its concentration, though both of them under-estimated vis-a-vis the observations. While the emissions are lower (higher) in SPRINTARS (WRF-Chem), overestimation of wind parameters in WRF-Chem caused the concentration to be similar in both models. Additionally, we quantified the under-estimations of anthropogenic BC emissions in the inventories used these two models and three other widely used emission inventories. Our analysis indicates that all these emission inventories underestimate the emissions of BC over India by a factor that ranges from 1.5 to 2.9. We have also studied the model simulations of aerosol optical depth over the Indian region. The models differ significantly in simulations of AOD, with WRF-Chem having a better agreement with satellite observations of AOD as far as the spatial pattern is concerned. It is important to note that in addition to BC, dust can also contribute significantly to AOD. The models differ in simulations of the spatial pattern of mineral dust over the Indian region. We find that both meteorological forcing and emission formulation contribute to these differences. Since AOD is column integrated parameter, description of vertical profiles in both models, especially since elevated aerosol layers are often observed over Indian region, could be also a contributing factor. Additionally, differences in the prescription of the optical properties of BC between the models appear to affect the AOD simulations. We also compared simulation of sea-salt concentration in the two models and found that WRF-Chem underestimated its concentration vis-a-vis SPRINTARS. The differences in near-surface oceanic wind speeds appear to be the main source of this difference. In-spite of these differences, we note that there are similarities in their simulation of spatial patterns of various aerosol species (with each other and with observations) and hence models could be valuable tools for aerosol-related studies over the Indian region. Better estimation of emission inventories could improve aerosol-related simulations. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple two-dimensional square cavity model is used to study shock attenuating effects of dust suspension in air. The GRP scheme for compressible flows was extended to simulate the fluid dynamics of dilute dust suspensions, employing the conventional two-phase approximation. A planar shock of constant intensity propagated in pure air over Aat ground and diffracted into a square cavity filled with a dusty quiescent suspension. Shock intensities were M-s = 1.30 and M-s = 2.032, dust loading ratios were alpha = 1 and alpha = 5, and particle diameters were d = 1, 10 and 50 mum. It was found that the diffraction patterns in the cavity were decisively attenuated by the dust suspension, particularly for the higher loading ratio. The particle size has a pronounced effect on the flow and wave pattern developed inside the cavity. Wall pressure historics were recorded for each of the three cavity walls, showing a clear attenuating effect of the dust suspension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

以对粉尘云状态参数的定量测定为基础,对玉米粉尘火焰在开口垂直管道中向上传播的过程进行了实验研究.在情形A中,火焰从管道的封闭端向开口端传播,在情形B中,从开口端向封闭端传播.实验中,观察到两种粉尘火焰,即湍流火焰和层流火焰,火焰形态转变对应的点火延迟时间约等于1.1s,即粉尘云湍流运动强度为10cm/s.情形A中,层流火焰的传播出现周期性振荡现象,湍流火焰在传播过程中不断加速;情形B中,两种火焰都匀速传播,湍流火焰传播速度明显大于层流火焰.在所考察的实验条件下,粉尘浓度对于玉米粉尘火焰传播速度的影响不大。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

对一种新型扬尘方法在垂直管道中形成的扬尘湍流特性进行了测量,在此基础上,观察和测量了玉米粉尘火焰向上传播的过程,讨论了湍流对火焰特性的影响.新方法产生的扬尘湍流强度相当低,随时间衰减缓慢,扬尘湍流的积分尺度随着时间增大,约为2 cm到3 cm.实验中观察到两种粉尘火焰:湍流火焰和层流火焰,火焰形态转变对应的点火延迟时间约等于1.1 s,即粉尘云湍流运动强度为10 cm/s,湍流火焰传播速度明显大于层流火焰.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present paper contains a detailed study of shock wave reflection from a wedge placed in various suspensions. In past works, the incident shock propagated initially in pure gas and the suspension started only at the leading edge of the deflecting wedge. However, in the present case the entire flow field is filled with a gas-dust suspension and the initial shock wave has steady-state structure relative to the shock front. In former studies the transmitted shock wave starts its propagation into the suspension and is reflected from the wedge at the same time. It is therefore obvious that the two unrelated processes of (2D) reflection and (1D) "transitional" relaxation occur simultaneously. In the present case the suspension behind the incident shock wave has reached steady state (i.e., it is a traveling wave) before the shock reaches the wedge leading edge. The reflection process from the deflecting wedge is studied for different dust mass loadings and different dust-particle diameter. It is shown that when the dust loading is low and the dust particle diameter is small the wave reflection pattern is similar to that observed in a similar pure gas case. In addition, an equilibrium state is reached, behind the evolved waves, very quickly. On the other hand, when the dust loading is relatively high and/or the dust particle diameter is relatively large, the observed reflection wave pattern is very different from that seen in a similar pure gas case. In such cases it takes much longer time to reach an equilibrium state behind the reflecting waves. It is also shown that the dust presence significantly affects the (gas) pressure on the wedge surface. The higher the dust loading is, the higher the pressure on the wedge surface. Suspensions composed of solid particle of different size, but having the same dust mass loading, will approach the same equilibrium pressure. However, it will take longer time to reach an equilibrium state for suspensions having large diameter particles. (C) 2004 Elsevier Ltd. All rights reserved.