834 resultados para INPUT-OUTPUT ANALYSIS
Resumo:
In this paper, new results and insights are derived for the performance of multiple-input, single-output systems with beamforming at the transmitter, when the channel state information is quantized and sent to the transmitter over a noisy feedback channel. It is assumed that there exists a per-antenna power constraint at the transmitter, hence, the equal gain transmission (EGT) beamforming vector is quantized and sent from the receiver to the transmitter. The loss in received signal-to-noise ratio (SNR) relative to perfect beamforming is analytically characterized, and it is shown that at high rates, the overall distortion can be expressed as the sum of the quantization-induced distortion and the channel error-induced distortion, and that the asymptotic performance depends on the error-rate behavior of the noisy feedback channel as the number of codepoints gets large. The optimum density of codepoints (also known as the point density) that minimizes the overall distortion subject to a boundedness constraint is shown to be the same as the point density for a noiseless feedback channel, i.e., the uniform density. The binary symmetric channel with random index assignment is a special case of the analysis, and it is shown that as the number of quantized bits gets large the distortion approaches the same as that obtained with random beamforming. The accuracy of the theoretical expressions obtained are verified through Monte Carlo simulations.
Resumo:
In uplink OFDMA, carrier frequency offsets (CFO) and/or timing offsets (TO) of other users with respect to a desired user can cause multiuser interference (MUI). In practical uplink OFDMA systems (e.g., IEEE 802.16e standard), effect of this MUI is made acceptably small by requiring that frequency/timing alignment be achieved at the receiver with high precision (e.g., CFO must be within 1 % of the subcarrier spacing and TO must be within 1/8th of the cyclic prefix duration in IEEE 802.16e), which is realized using complex closed-loop frequency/timing correction between the transmitter and the receiver. An alternate open-loop approach to handle the MUI induced by large CFOs and TOs is to employ interference cancellation techniques at the receiver. In this paper, we first analytically characterize the degradation in the average output signal-to-interference ratio (SIR) due to the combined effect of large CFOs and TOs in uplink OFDMA. We then propose a parallel interference canceller (PIC) for the mitigation of interference due to CFOs and TOs in this system. We show that the proposed PIC effectively mitigates the performance loss due to CFO/TO induced interference in uplink OFDMA.
Resumo:
A new performance metric, Peak-Error Ratio (PER) has been presented to benchmark the performance of a class of neuron circuits to realize neuron activation function (NAF) and its derivative (DNAF). Neuron circuits, biased in subthreshold region, based on the asymmetric cross-coupled differential pair configuration and conventional configuration of applying small external offset voltage at the input have been compared on the basis of PER. It is shown that the technique of using transistor asymmetry in a cross-coupled differential pair performs on-par with that of applying external offset voltage. The neuron circuits have been experimentally prototyped and characterized as a proof of concept on the 1.5 mu m AMI technology.
Resumo:
A new performance metric, Peak-Error Ratio (PER) has been presented to benchmark the performance of a class of neuron circuits to realize neuron activation function (NAF) and its derivative (DNAF). Neuron circuits, biased in subthreshold region, based on the asymmetric cross-coupled differential pair configuration and conventional configuration of applying small external offset voltage at the input have been compared on the basis of PER. It is shown that the technique of using transistor asymmetry in a cross-coupled differential pair performs on-par with that of applying external offset voltage. The neuron circuits have been experimentally prototyped and characterized as a proof of concept on the 1.5 mu m AMI technology.
Resumo:
In the present study, results of reliability analyses of four selected rehabilitated earth dam sections, i.e., Chang, Tapar, Rudramata, and Kaswati, under pseudostatic loading conditions, are presented. Using the response surface methodology, in combination with first order reliability method and numerical analysis, the reliability index (beta) values are obtained and results are interpreted in conjunction with conventional factor of safety values. The influence of considering variability in the input soil shear strength parameters, horizontal seismic coefficient (alpha(h)), and location of reservoir full level on the stability assessment of the earth dam sections is discussed in the probabilistic framework. A comparison of results with those obtained from other method of reliability analysis, viz., Monte Carlo simulations combined with limit equilibrium approach, provided a basis for discussing the stability of earth dams in probabilistic terms, and the results of the analysis suggest that the considered earth dam sections are reliable and are expected to perform satisfactorily.
Resumo:
The transition time associated with the time-variation of the voltage across a two-terminal diaphragm-less solion in response to a step-current stimulus has been studied experimentally. A theoretical analysis has also been made by solving the diffusion problem under the appropriate initial and boundary conditions. The behaviour of the theoretically predicted transition times is in agreement with the observed behaviour. The systems under study have been shown to be different from those used hitherto in thin-layer chronopotentiometry.
Resumo:
The transition time associated with the time-variation of the voltage across a two-terminal diaphragm-less solion in response to a step-current stimulus has been studied experimentally. A theoretical analysis has also been made by solving the diffusion problem under the appropriate initial and boundary conditions. The behaviour of the theoretically predicted transition times is in agreement with the observed behaviour. The systems under study have been shown to be different from those used hitherto in thin-layer chronopotentiometry.
Resumo:
This paper presents a study of kinematic and force singularities in parallel manipulators and closed-loop mechanisms and their relationship to accessibility and controllability of such manipulators and closed-loop mechanisms, Parallel manipulators and closed-loop mechanisms are classified according to their degrees of freedom, number of output Cartesian variables used to describe their motion and the number of actuated joint inputs. The singularities in the workspace are obtained by considering the force transformation matrix which maps the forces and torques in joint space to output forces and torques ill Cartesian space. The regions in the workspace which violate the small time local controllability (STLC) and small time local accessibility (STLA) condition are obtained by deriving the equations of motion in terms of Cartesian variables and by using techniques from Lie algebra.We show that for fully actuated manipulators when the number ofactuated joint inputs is equal to the number of output Cartesian variables, and the force transformation matrix loses rank, the parallel manipulator does not meet the STLC requirement. For the case where the number of joint inputs is less than the number of output Cartesian variables, if the constraint forces and torques (represented by the Lagrange multipliers) become infinite, the force transformation matrix loses rank. Finally, we show that the singular and non-STLC regions in the workspace of a parallel manipulator and closed-loop mechanism can be reduced by adding redundant joint actuators and links. The results are illustrated with the help of numerical examples where we plot the singular and non-STLC/non-STLA regions of parallel manipulators and closed-loop mechanisms belonging to the above mentioned classes. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A method for total risk analysis of embankment dams under earthquake conditions is discussed and applied to the selected embankment dams, i.e., Chang, Tapar, Rudramata, and Kaswati located in the Kachchh region of Gujarat, India, to obtain the seismic hazard rating of the dam site and the risk rating of the structures. Based on the results of the total risk analysis of the dams, coupled non-linear dynamic numerical analyses of the dam sections are performed using acceleration time history record of the Bhuj (India) earthquake as well as five other major earthquakes recorded worldwide. The objective of doing so is to perform the numerical analysis of the dams for the range of amplitude, frequency content and time duration of input motions. The deformations calculated from the numerical analyses are also compared with other approaches available in literature, viz, Makdisi and Seed (1978) approach, Jansen's approach (1990), Swaisgood's method (1995), Bureau's method (1997). Singh et al. approach (2007), and Saygili and Rathje approach (2008) and the results are utilized to foresee the stability of dams in future earthquake scenario. (C) 2010 Elsevier B.V. All rights reserved.