984 resultados para IGNITION
Resumo:
Thirteen sediment samples, including calcareous ooze, sandy clay, volcanic sand, gravel, and volcanic breccia, from Ocean Drilling Program (ODP) Sites 732B, 734B, 734G and Conrad Cruise 27-9, Station 17, were examined. Contents of major and trace elements were determined using XRF or ICP (on samples <0.5 g). Determinations of rare earth elements (REE) were performed using ICP-MS. Mineralogy was determined using XRD. On the basis of the samples studied, the sediments accumulating in the Atlantis II Fracture Zone are characterized by generally high MgO, Cr, and Ni contents compared with other deep-sea sediments. A variety of sources are reflected in the mineralogy and geochemistry of these sediments. Serpentine, brucite, magnetite, and high MgO, Cr, and Ni contents indicate derivation from ultramafic basement. The occurrence of albite, analcime, primary mafic minerals, and smectite/chlorite in some samples, coupled with high SiO2, Al2O3, TiO2, Fe2O3, V, and Y indicate contribution from basaltic basement. A third major sediment source is characterized as biogenic material and is reflected primarily in the presence of carbonate minerals, and high CaO, Sr, Pb, and Zn in certain samples. Kaolinite, illite, quartz, and some chlorite are most likely derived from continental areas or other parts of the ocean by long-distance sediment transport in surface or other ocean currents. Proportions of source materials in the sediments reflect the thickness of the sediment cover, slope of the seafloor, and the nature of and proximity to basement lithologies. REE values are low compared to other deep-sea sediments and indicate no evidence of hydrothermal activity in the Atlantis II Fracture Zone sediments. This is supported by major- and trace-element data.
Resumo:
Major and trace element (including REE) geochemistry of basalts and chilled basaltic glasses from the MAR axial zone in the vicinity of the Sierra Leone FZ (5-7°10'N) has been studied. Associations of basalts of various compositions with particular ocean-floor geological structural features have been analyzed as well. Three basaltic varieties have been discriminated. Almost ubiquitous are high-Mg basalts (Variety 1) that are derivatives of N-MORB tholeiitic melts and that are produced in the axial zone of spreading. Variety 2 is alkaline basalts widespread on the southwestern flank of the MAR crest zone in the Sierra Leone region, likely generated through deep mantle melting under plume impact. Variety 3 is basalts derivative from T- and P-MORB-like tholeiitic melts and originating through addition of deeper mantle material to depleted upper mantle melts. Magma generation parameters, as calculated from chilled glass compositions, are different for depleted tholeiites (44-55 km, 1320-1370°C) and enriched tholeiites (45-78 km, 1330-1450°C). Mantle plume impact is shown to affect not only tholeiitic basalt compositions but also magma generation conditions in the axial spreading zone, resulting in higher Ti and Na concentrations in melts parental to rift-related basalts occurring near the plume. T- and P-MORBs are also developed near areas where mantle plumes are localized. High-Mg basalts are shown to come in several types with distinctive Ti and Na contents. Nearly every single MAR segment (bounded by sinistral strike slips and the Bogdanov Fracture Zone) is featured by its own basalt type suggesting that it has formed above an asthenospheric diapir with its unique magma generation conditions. These conditions are time variable. Likely causes of temporal and spatial instability of the mantle upwelling beneath this portion of the MAR are singular tectonic processes and plume activity. In sulfide-bearing rift morphostructures (so-called "Ore area'' and the Markov Basin), basalts make up highly evolved suites generated through olivine and plagioclase fractionation, which is suggestive of relatively long-lived magma chambers beneath the sulfide-bearing rift morphostructures. Functioning of these chambers is a combined effect of singular geodynamic regime and plume activity. In these chambers melts undergo deep differentiation leading to progressively increasing concentration of sulfide phase, eventually to be supplied to the hydrothermal plumbing system.
Resumo:
Alteration of sheeted dikes exposed along submarine escarpments at the Pito Deep Rift (NE edge of the Easter microplate) provides constraints on the crustal component of axial hydrothermal systems at fast spreading mid-ocean ridges. Samples from vertical transects through the upper crust constrain the temporal and spatial scales of hydrothermal fluid flow and fluid-rock reaction. The dikes are relatively fresh (average extent of alteration is 27%), with the extent of alteration ranging from 0 to >80%. Alteration is heterogeneous on scales of tens to hundreds of meters and displays few systematic spatial trends. Background alteration is amphibole-dominated, with chlorite-rich dikes sporadically distributed throughout the dike complex, indicating that peak temperatures ranged from <300°C to >450°C and did not vary systematically with depth. Dikes locally show substantial metal mobility, with Zn and Cu depletion and Mn enrichment. Amphibole and chlorite fill fractures throughout the dike complex, whereas quartz-filled fractures and faults are only locally present. Regional variability in alteration characteristics is found on a scale of <1-2 km, illustrating the diversity of fluid-rock interaction that can be expected in fast spreading crust. We propose that much of the alteration in sheeted dike complexes develops within broad, hot upwelling zones, as the inferred conditions of alteration cannot be achieved in downwelling zones, particularly in the shallow dikes. Migration of circulating cells along rides axes and local evolution of fluid compositions produce sections of the upper crust with a distinctive character of alteration, on a scale of <1-2 km and <5-20 ka.
Resumo:
The phase relations of natural volcaniclastic sediments from the west Pacific Ocean were investigated experimentally at conditions of 3-6 GPa and 800-900 °C with 10 wt.% added H2O (in addition to ~ 10 wt.% structurally-bound H2O) to induce hydrous melting. Volcaniclastic sediments are shown to produce a sub-solidus assemblage of garnet, clinopyroxene, biotite, quartz/coesite and the accessory phases rutile ± Fe-Ti oxide ± apatite ± monazite ± zircon. Hydrous melt appears at temperatures exceeding 800-850 °C, irrespective of pressure. The melt-producing reaction consumes clinopyroxene, biotite and quartz/coesite and produces orthopyroxene. These phase relations differ from those of pelagic clays and K-bearing mid ocean ridge basalts (e.g. altered oceanic crust) that contain phengite, rather than biotite, as a sub-solidus phase. Despite their relatively high melt productivity, the wet solidus for volcaniclastic sediments is found to be higher (825-850 °C) than other marine sediments (700-750 °C) at 3 GPa. This trend is reversed at high-pressure conditions (6 GPa) where the biotite melting reaction occurs at lower temperatures (800-850 °C) than the phengite melting reaction (900-1000 °C). Trace element data was obtained from the 3 GPa run products, showing that partial melts are depleted in heavy rare earth elements (REE) and high field strength elements (HFSE), due to the presence of residual garnet and rutile, and are enriched in large ion lithophile elements (LILE), except for Sr and Ba. This is in contrast to previous experimental studies on pelagic sediments at sub-arc depths, where Sr and Ba are among the most enriched trace elements in glasses. This behavior can be partly attributed to the presence of residual apatite, which also host some light REE in our supra-solidus residues. Our new experimental results account for a wide range of trace element and U-series geochemical features of the sedimentary component of the Mariana arc magmas, including imparting a substantial Nb anomaly to melts from an anomaly-free protolith.
Resumo:
The lithostratigraphy of Neogene hemipelagic sediments recovered from the Japan Sea during Leg 127 was revised to improve intersite consistency and to remove confusion stemming from diagenetic modification of the lithology through the opal-A to opal-CT transformation. Special emphasis was put on the presence and nature of dark-light cycles in revising the lithostratigraphy. Mineral composition analysis was conducted for samples from Sites 794, 795, and 797. In addition, major element chemical composition analysis was conducted for these same sample sets from Site 794. The result of mineral composition analysis suggests that the detrital component, which consists of such minerals as quartz, plagioclase, illite, and kaolinite plus chlorite, is diluted to various degrees by biogenic silica (opal-A) and its diagenetic equivalents (opal-CT and quartz). Smectite, on the other hand, may be a diagenetic or hydrothermal alteration product of volcanic material, although more study is necessary to confirm its origin. As a whole, vertical variation in the sediment composition is consistent with the revised lithostratigraphy and helps to characterize the redefined lithologic units quantitatively.
Resumo:
Mineral and chemical compositions of highly ferruginous layered silicates (HLS) of glauconite sands occurred on the East Korean Rise outside volcanic structures and on an unnamed volcano and the Chentsov Volcano have been studied. The use of cluster and discriminant analyses has resulted to more objectively distinguished groups among HLS, and the use of factor analysis - to illustrate correlations between chemical elements in different groups. It has been found that green mineral assemblages of the East Korean Rise are heterogeneous in terms of morphology, composition and origin, and their formation is a complex multistage process including both neoformation and degradation.