910 resultados para Hypoxia-Inducible Factor 1, alpha Subunit
Resumo:
We are interested in using recombinant adeno-associated viral vectors in the treatment of hemophilia A. Because of the size constraints of recombinant adeno-associated viral vectors, we delivered the heavy and light chains of the human factor 8 (hFVIII) cDNA independently by using two separate vectors. Recombinant AAV vectors were constructed that utilized the human elongation factor 1α promoter, a human growth factor polyadenylation signal, and the cDNA sequences encoding either the heavy or light chain of hFVIII. Portal vein injections of each vector alone, a combination of both vectors, or a hFIX control vector were performed in C57BL/6 mice. An ELISA specific for the light chain of hFVIII demonstrated very high levels (2–10 μg/ml) of protein expression in animals injected with the light chain vector alone or with both vectors. We utilized a chromogenic assay in combination with an antibody specific to hFVIII to determine the amount of biologically active hFVIII in mouse plasma. In animals injected with both the heavy and light chain vectors, greater than physiological levels (200–400 ng/ml) of biologically active hFVIII were produced. This suggests that coexpression of the heavy and light chains of hFVIII may be a feasible approach for treatment of hemophilia A.
Resumo:
Growth factors can influence lineage determination of neural crest stem cells (NCSCs) in an instructive manner, in vitro. Because NCSCs are likely exposed to multiple signals in vivo, these findings raise the question of how stem cells would integrate such combined influences. Bone morphogenetic protein 2 (BMP2) promotes neuronal differentiation and glial growth factor 2 (GGF2) promotes glial differentiation; if NCSCs are exposed to saturating concentrations of both factors, BMP2 appears dominant. By contrast, if the cells are exposed to saturating concentrations of both BMP2 and transforming growth factor β1 (which promotes smooth muscle differentiation), the two factors appear codominant. Sequential addition experiments indicate that NCSCs require 48–96 hrs in GGF2 before they commit to a glial fate, whereas the cells commit to a smooth muscle fate within 24 hr in transforming growth factor β1. The delayed response to GGF2 does not reflect a lack of functional receptors; however, because the growth factor induces rapid mitogen-activated protein kinase phosphorylation in naive cells. Furthermore, GGF2 can attenuate induction of the neurogenic transcription factor mammalian achaete-scute homolog 1, by low doses of BMP2. This short-term antineurogenic influence of GGF2 is not sufficient for glial lineage commitment, however. These data imply that NCSCs exhibit cell-intrinsic biases in the timing and relative dosage sensitivity of their responses to instructive factors that influence the outcome of lineage decisions in the presence of multiple factors. The relative delay in glial lineage commitment, moreover, apparently reflects successive short-term and longer-term actions of GGF2. Such a delay may help to explain why glia normally differentiate after neurons, in vivo.
Resumo:
LEF-1 (lymphoid enhancer-binding factor 1) is a cell type-specific member of the family of high mobility group (HMG) domain proteins that recognizes a specific nucleotide sequence in the T cell receptor (TCR) α enhancer. In this study, we extend the analysis of the DNA-binding properties of LEF-1 and examine their contributions to the regulation of gene expression. We find that LEF-1, like nonspecific HMG-domain proteins, can interact with irregular DNA structures such as four-way junctions, albeit with lower efficiency than with specific duplex DNA. We also show by a phasing analysis that the LEF-induced DNA bend is directed toward the major groove. In addition, we find that the interaction of LEF-1 with a specific binding site in circular DNA changes the linking number of DNA and unwinds the double helix. Finally, we identified two nucleotides in the LEF-1-binding site that are important for protein-induced DNA bending. Mutations of these nucleotides decrease both the extent of DNA bending and the transactivation of the TCRα enhancer by LEF-1, suggesting a contribution of protein-induced DNA bending to the function of TCRα enhancer.
Resumo:
rRNA synthesis by RNA polymerase I requires both the promoter selectivity factor 1, which is composed of TATA binding protein (TBP) and three TBP-associated factors, and the activator upstream binding factor (UBF). Whereas there is strong evidence implicating a role for phosphorylation of UBF in the control of growth-induced increases in rRNA transcription, the mechanism of this effect is not known. Results of immunoprecipitation studies with TBP antibodies showed increased recovery of phosphorylated UBF from growth-stimulated smooth muscle cells. Moreover, using an immobilized protein-binding assay, we found that phosphorylation of UBF in vivo in response to stimulation with different growth factors or in vitro with smooth muscle cell nuclear extract increased its binding to TBP. Finally, we demonstrated that UBF–TBP binding depended on the C-terminal ‘acidic tail’ of UBF that was hyperphosphorylated at multiple serine sites after growth factor stimulation. Results of these studies suggest that phosphorylation of UBF and subsequent binding to TBP represent a key regulatory step in control of growth-induced increases in rRNA synthesis.
Resumo:
Low voltage-activated, or T-type, calcium currents are important regulators of neuronal and muscle excitability, secretion, and possibly cell growth and differentiation. The gene (or genes) coding for the pore-forming subunit of low voltage-activated channel proteins has not been unequivocally identified. We have used reverse transcription–PCR to identify partial clones from rat atrial myocytes that share high homology with a member of the E class of calcium channel genes. Antisense oligonucleotides targeting one of these partial clones (raE1) specifically block the increase in T-current density that normally results when atrial myocytes are treated with insulin-like growth factor 1 (IGF-1). Antisense oligonucleotides targeting portions of the neuronal rat α1E sequence, which are not part of the clones detected in atrial tissue, also block the IGF-1-induced increase in T-current, suggesting that the high homology to α1E seen in the partial clone may be present in the complete atrial sequence. The basal T-current expressed in these cells is also blocked by antisense oligonucleotides, which is consistent with the notion that IGF-1 up-regulates the same gene that encodes the basal current. These results support the hypothesis that a member of the E class of calcium channel genes encodes a low voltage-activated calcium channel in atrial myocytes.
Resumo:
T cell activation rapidly and transiently regulates the functional activity of integrin receptors. Stimulation of CD3/T cell receptor, CD2 or CD28, as well as activation with phorbol esters, can induce within minutes an increase in β1 integrin-mediated adhesion of T cells to fibronectin. In this study, we have produced and utilized a mutant of the Jurkat T cell line, designated A1, that lacks protein and mRNA expression of the β1 integrin subunit but retains normal levels of CD2, CD3, and CD28 on the cell surface. Activation-dependent adhesion of A1 cells to fibronectin could be restored upon transfection of a wild-type human β1 integrin cDNA. Adhesion induced by phorbol 12-myristate 13-acetate-, CD3-, CD2-, and CD28 stimulation did not occur if the carboxy-terminal five amino acids of the β1 tail were truncated or if either of two well-conserved NPXY motifs were deleted. Scanning alanine substitutions of the carboxy-terminal five amino acids demonstrated a critical role for the tyrosine residue at position 795. The carboxy-terminal truncation and the NPXY deletions also reduced adhesion induced by direct stimulation of the β1 integrin with the activating β1 integrin-specific mAb TS2/16, although the effects were not as dramatic as observed with the other integrin-activating signals. These results demonstrate a vital role for the amino-terminal NPXY motif and the carboxy-terminal end of the β1 integrin cytoplasmic domain in activation-dependent regulation of integrin-mediated adhesion in T cells. Furthermore, the A1 cell line represents a valuable new cellular reagent for the analysis of β1 integrin structure and function in human T cells.