986 resultados para Housing deformation
Resumo:
The life-cycle of shallow frontal waves and the impact of deformation strain on their development is investigated using the idealised version of the Met Office non-hydrostatic Unified Model which includes the same physics and dynamics as the operational forecast model. Frontal wave development occurs in two stages; first, a deformation strain is applied to a front and a positive potential vorticity (PV) strip forms, generated by latent heat release in the frontal updraft; second, as the deformation strain is reduced the PV strip breaks up into individual anomalies. The circulations associated with the PV anomalies cause shallow frontal waves to form. The structure of the simulated frontal waves is consistent with the conceptual model of a frontal cyclone. Deeper frontal waves are simulated if the stability of the atmosphere is reduced. Deformation strain rates of different strengths are applied to the PV strip to determine whether a deformation strain threshold exists above which frontal wave development is suppressed. An objective method of frontal wave activity is defined and frontal wave development was found to be suppressed by deformation strain rates $\ge 0.4\times10^{-5}\mbox{s}^{-1}$. This value compares well with observed deformation strain rate thresholds and the analytical solution for the minimum deformation strain rate needed to suppress barotropic frontal wave development. The deformation strain rate threshold is dependent on the strength of the PV strip with strong PV strips able to overcome stronger deformation strain rates (leading to frontal wave development) than weaker PV strips.
The impact of deformation strain on the formation of banded clouds in idealized modeling experiments
Resumo:
Experiments are performed using an idealized version of an operational forecast model to determine the impact on banded frontal clouds of the strength of deformational forcing, low-level baroclinicity, and model representation of convection. Line convection is initiated along the front, and slantwise bands extend from the top of the line-convection elements into the cold air. This banding is attributed primarily to M adjustment. The cross-frontal spreading of the cold pool generated by the line convection leads to further triggering of upright convection in the cold air that feeds into these slantwise bands. Secondary low-level bands form later in the simulations; these are attributed to the release of conditional symmetric instability. Enhanced deformation strain leads to earlier onset of convection and more coherent line convection. A stronger cold pool is generated, but its speed is reduced relative to that seen in experiments with weaker deformational strain, because of inhibition by the strain field. Enhanced low-level baroclinicity leads to the generation of more inertial instability by line convection (for a given capping height of convection), and consequently greater strength of the slantwise circulations formed by M adjustment. These conclusions are based on experiments without a convective-parametrization scheme. Experiments using the standard or a modified scheme for this model demonstrate known problems with the use of this scheme at the awkward 4 km grid length used in these simulations. Copyright © 2008 Royal Meteorological Society
Resumo:
The toughness of a polymer glass is determined by the interplay of yielding, strain softening, and strain hardening. Molecular-dynamics simulations of a typical polymer glass, atactic polystyrene, under the influence of active deformation have been carried out to enlighten these processes. It is observed that the dominant interaction for the yield peak is of interchain nature and for the strain hardening of intrachain nature. A connection is made with the microscopic cage-to-cage motion. It is found that the deformation does not lead to complete erasure of the thermal history but that differences persist at large length scales. Also we find that the strain-hardening modulus increases with increasing external pressure. This new observation cannot be explained by current theories such as the one based on the entanglement picture and the inclusion of this effect will lead to an improvement in constitutive modeling.
Resumo:
This paper explores the provision of homes for less wealthy households in rural England. By allowing 'exceptions' to UK planning law to provide low-income housing for local residents, the national government seeks to secure dwellings for the less wealthy and so sustain socially mixed rural villages. This paper explores how the production of homes through the exception policy is not conducive to the construction of many new houses. The particular emphasis in the paper is on how responsible agents are discouraged from being more active in erecting new village homes for low-income households. Empirically, the paper draws on documents, interviews and a social survey in the counties of Bedfordshire, Cambridgeshire and Norfolk to investigate the process of delivering rural exception homes. It is concluded that, despite Government assertions that a socially mixed countryside is desirable, the decision-making criteria that dominate the worldviews of agents in social housing provision work against this outcome. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We examine the motion of the ground surface on the Soufriere Hills Volcano, Montserrat between 1998 and 2000 using radar interferometry (InSAR). To minimise the effects of variable atmospheric water vapour on the InSAR measurements we use independently-derived measurements of the radar path delay from six continuous GPS receivers. The surfaces providing a measurable inter-ferometric signal are those on pyroclastic flow deposits, mainly emplaced in 1997. Three types of surface motion can be discriminated. Firstly, the surfaces of thick, valley-filling deposits subsided at rates of 150-120 mm/year in the year after emplacement to 50-30 mm/year two years later. This must be due to contraction and settling effects during cooling. The second type is the near-field motion localised within about one kilometre of the dome. Both subsidence and uplift events are seen and though the former could be due to surface gravitational effects, the latter may reflect shallow (< 1 km) pressurisation effects within the conduit/dome. Far-field motions of the surface away from the deeply buried valleys are interpreted as crustal strains. Because the flux of magma to the surface stopped from March 1998 to November 1999 and then resumed from November 1999 through 2000, we use InSAR data from these two periods to test the crustal strain behaviour of three models of magma supply: open, depleting and unbalanced. The InSAR observations of strain gradients of 75-80 mm/year/krn uplift during the period of quiescence on the western side of the volcano are consistent with an unbalanced model in which magma supply into a crustal magma chamber continues during quiescence, raising chamber pressure that is then released upon resumption of effusion. GPS motion vectors agree qualitatively with the InSAR displacements but are of smaller magnitude. The discrepancy may be due to inaccurate compensation for atmospheric delays in the InSAR data. (c) 2005 Elsevier B.V. All rights reserved.