959 resultados para Homeostase redox


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apatone™, a combination of menadione (2-methyl-1,4-naphthoquinone, VK3) and ascorbic acid (vitamin C, VC) is a new strategy for cancer treatment. Part of its effect on tumor cells is related to the cellular pro-oxidative imbalance provoked by the generation of hydrogen peroxide (H2O2) through naphthoquinone redox cycling. In this study, we attempted to find new naphthoquinone derivatives that would increase the efficiency of H2O2 production, thereby potentially increasing its efficacy for cancer treatment. The presence of an electron-withdrawing group in the naphthoquinone moiety had a direct effect on the efficiency of H2O2 production. The compound 2-bromo-1,4-naphthoquinone (BrQ), in which the bromine atom substituted the methyl group in VK3, was approximately 10- and 19-fold more efficient than VK3 in terms of oxygen consumption and H2O2 production, respectively. The ratio [H2O2]produced / [naphthoquinone]consumed was 68 ± 11 and 5.8 ± 0.2 (µM/µM) for BrQ and VK3, respectively, indicating a higher efficacy of BrQ as a catalyst for the autoxidation of ascorbic acid. Both VK3 and BrQ reacted with glutathione (GSH), but BrQ was the more effective substrate. Part of GSH was incorporated into the naphthoquinone, producing a nucleophilic substitution product (Q-SG). The depletion of BrQ by GSH did not prevent its redox capacity since Q-SG was also able to catalyze the production of reactive oxygen species. VK3/VC has already been submitted to clinical trials for the treatment of prostate cancer and has demonstrated promising results. However, replacement of VK3 with BrQ will open new lines of investigation regarding this approach to cancer treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most drugs function by binding reversibly to specific biological targets, and therapeutic effects generally require saturation of these targets. One means of decreasing required drug concentrations is incorporation of reactive metal centers that elicit irreversible modification of targets. A common approach has been the design of artificial proteases/nucleases containing metal centers capable of hydrolyzing targeted proteins or nucleic acids. However, these hydrolytic catalysts typically provide relatively low rate constants for target inactivation. Recently, various catalysts were synthesized that use oxidative mechanisms to selectively cleave/inactivate therapeutic targets, including HIV RRE RNA or angiotensin converting enzyme (ACE). These oxidative mechanisms, which typically involve reactive oxygen species (ROS), provide access to comparatively high rate constants for target inactivation. Target-binding affinity, co-reactant selectivity, reduction potential, coordination unsaturation, ROS products (metal-associated vsmetal-dissociated; hydroxyl vs superoxide), and multiple-turnover redox chemistry were studied for each catalyst, and these parameters were related to the efficiency, selectivity, and mechanism(s) of inactivation/cleavage of the corresponding target for each catalyst. Important factors for future oxidative catalyst development are 1) positioning of catalyst reduction potential and redox reactivity to match the physiological environment of use, 2) maintenance of catalyst stability by use of chelates with either high denticity or other means of stabilization, such as the square planar geometric stabilization of Ni- and Cu-ATCUN complexes, 3) optimal rate of inactivation of targets relative to the rate of generation of diffusible ROS, 4) targeting and linker domains that afford better control of catalyst orientation, and 5) general bio-availability and drug delivery requirements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macrophage migration inhibitory factor (MIF), a pleiotropic cytokine, plays an important role in the pathogenesis of atrial fibrillation; however, the upstream regulation of MIF in atrial myocytes remains unclear. In the present study, we investigated whether and how MIF is regulated in response to the renin-angiotensin system and oxidative stress in atrium myocytes (HL-1 cells). MIF protein and mRNA levels in HL-1 cells were assayed using immunofluorescence, real-time PCR, and Western blot. The result indicated that MIF was expressed in the cytoplasm of HL-1 cells. Hydrogen peroxide (H2O2), but not angiotensin II, stimulated MIF expression in HL-1 cells. H2O2-induced MIF protein and gene levels increased in a dose-dependent manner and were completely abolished in the presence of catalase. H2O2-induced MIF production was completely inhibited by tyrosine kinase inhibitors genistein and PP1, as well as by protein kinase C (PKC) inhibitor GF109203X, suggesting that redox-sensitive MIF production is mediated through tyrosine kinase and PKC-dependent mechanisms in HL-1 cells. These results suggest that MIF is upregulated by HL-1 cells in response to redox stress, probably by the activation of Src and PKC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Morphine is a potent analgesic opioid used extensively for pain treatment. During the last decade, global consumption grew more than 4-fold. However, molecular mechanisms elicited by morphine are not totally understood. Thus, a growing literature indicates that there are additional actions to the analgesic effect. Previous studies about morphine and oxidative stress are controversial and used concentrations outside the range of clinical practice. Therefore, in this study, we hypothesized that a therapeutic concentration of morphine (1 μM) would show a protective effect in a traditional model of oxidative stress. We exposed the C6 glioma cell line to hydrogen peroxide (H2O2) and/or morphine for 24 h and evaluated cell viability, lipid peroxidation, and levels of sulfhydryl groups (an indicator of the redox state of the cell). Morphine did not prevent the decrease in cell viability provoked by H2O2 but partially prevented lipid peroxidation caused by 0.0025% H2O2 (a concentration allowing more than 90% cell viability). Interestingly, this opioid did not alter the increased levels of sulfhydryl groups produced by exposure to 0.0025% H2O2, opening the possibility that alternative molecular mechanisms (a direct scavenging activity or the inhibition of NAPDH oxidase) may explain the protective effect registered in the lipid peroxidation assay. Our results demonstrate, for the first time, that morphine in usual analgesic doses may contribute to minimizing oxidative stress in cells of glial origin. This study supports the importance of employing concentrations similar to those used in clinical practice for a better approximation between experimental models and the clinical setting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The antioxidant effects of Caryocar brasiliense Camb, commonly known as the pequi fruit, have not been evaluated to determine their protective effects against oxidative damage in lung carcinogenesis. In the present study, we evaluated the role of pequi fruit against urethane-induced DNA damage and oxidative stress in forty 8-12 week old male BALB/C mice. An in vivo comet assay was performed to assess DNA damage in lung tissues and changes in lipid peroxidation and redox cycle antioxidants were monitored for oxidative stress. Prior supplementation with pequi oil or its extract (15 µL, 60 days) significantly reduced urethane-induced oxidative stress. A protective effect against DNA damage was associated with the modulation of lipid peroxidation and low protein and gene expression of nitric oxide synthase. These findings suggest that the intake of pequi fruit might protect against in vivo genotoxicity and oxidative stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nykyään monet käyttökohteet vaativat akuilta aiempaa parempaa suorituskykyä, joten on syntynyt kasvavaa tarvetta uusien akkujen kehittämiselle erilaisista uusista materiaaleista ja uusiin valmistusmenetelmiin pohjautuen. Työn tavoitteena on selvittää kirjallisuustutkimuksena litium-vanadiini-fosfaattiakun ja vanadiini-redoksi-virtausakun ominaisuuksia, saatavuutta, sovelluskohteita ja vertailla niitä muutamaan eri litiumakkutekniikkaan. Tutkimuksen perusteella litium-vanadiini-fosfaattiakkuja ei ole vielä saatavilla kaupallisesti, joten työssä tutkittiin niitä teknisten raporttien pohjalta. Raporttien pohjalta arvioituna, parhaita ominaisuuksia litium-vanadiini-fosfaattiakuilla on erinomainen kuormituksen kesto ja korkea nimellisjännite. Sähköisissä ajoneuvoissa litium-vanadiini-fosfaattiakuilla on suurimmat mahdollisuudet erilaisissa hybridiajoneuvoissa, mutta todennäköisesti ne soveltuvat täyssähköisiin ajoneuvoihin vähintään yhtä hyvin kuin esimerkiksi litium-rauta-fosfaattiakut, jos valmistuskustannukset olisivat samalla tasolla. Vanadiini-redoksi-virtausakkua on jo markkinoilla usean valmistajan toimesta. Niiden ominaisuudet poikkeavat paljon muista akkutyypeistä ja erikoisuutena on mahdollisuus akun pikalataukseen elektrolyyttinesteet vaihtamalla. Syklien kestossa päästään myös erinomaisiin arvoihin, mutta suurimmat ongelmat ovat lyijyakkuakin matalampi energiatiheys ja tehotiheys. Vanadiini-redoksi-virtausakut soveltuvat parhaiten suuren kokoluokan sähköverkkoratkaisuihin ja sähköisissä ajoneuvoissa niiden mahdollisuudet rajoittunevat täyssähköisiin linja-autoihin ja isoihin työkoneisiin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In oxygenic photosynthesis, the highly oxidizing reactions of water splitting produce reactive oxygen species (ROS) and other radicals that could damage the photosynthetic apparatus and affect cell viability. Under particular environmental conditions, more electrons are produced in water oxidation than can be harmlessly used by photochemical processes for the reduction of metabolic electron sinks. In these circumstances, the excess of electrons can be delivered, for instance, to O2, resulting in the production of ROS. To prevent detrimental reactions, a diversified assortment of photoprotection mechanisms has evolved in oxygenic photosynthetic organisms. In this thesis, I focus on the role of alternative electron transfer routes in photoprotection of the cyanobacterium Synechocystis sp. PCC 6803. Firstly, I discovered a novel subunit of the NDH-1 complex, NdhS, which is necessary for cyclic electron transfer around Photosystem I, and provides tolerance to high light intensities. Cyclic electron transfer is important in modulating the ATP/NADPH ratio under stressful environmental conditions. The NdhS subunit is conserved in many oxygenic phototrophs, such as cyanobacteria and higher plants. NdhS has been shown to link linear electron transfer to cyclic electron transfer by forming a bridge for electrons accumulating in the Ferredoxin pool to reach the NDH-1 complexes. Secondly, I thoroughly investigated the role of the entire flv4-2 operon in the photoprotection of Photosystem II under air level CO2 conditions and varying light intensities. The operon encodes three proteins: two flavodiiron proteins Flv2 and Flv4 and a small Sll0218 protein. Flv2 and Flv4 are involved in a novel electron transport pathway diverting electrons from the QB pocket of Photosystem II to electron acceptors, which still remain unknown. In my work, it is shown that the flv4-2 operon-encoded proteins safeguard Photosystem II activity by sequestering electrons and maintaining the oxidized state of the PQ pool. Further, Flv2/Flv4 was shown to boost Photosystem II activity by accelerating forward electron flow, triggered by an increased redox potential of QB. The Sll0218 protein was shown to be differentially regulated as compared to Flv2 and Flv4. Sll0218 appeared to be essential for Photosystem II accumulation and was assigned a stabilizing role for Photosystem II assembly/repair. It was also shown to be responsible for optimized light-harvesting. Thus, Sll0218 and Flv2/Flv4 cooperate to protect and enhance Photosystem II activity. Sll0218 ensures an increased number of active Photosystem II centers that efficiently capture light energy from antennae, whilst the Flv2/Flv4 heterodimer provides a higher electron sink availability, in turn, promoting a safer and enhanced activity of Photosystem II. This intertwined function was shown to result in lowered singlet oxygen production. The flv4-2 operon-encoded photoprotective mechanism disperses excess excitation pressure in a complimentary manner with the Orange Carotenoid Protein-mediated non-photochemical quenching. Bioinformatics analyses provided evidence for the loss of the flv4-2 operon in the genomes of cyanobacteria that have developed a stress inducible D1 form. However, the occurrence of various mechanisms, which dissipate excitation pressure at the acceptor side of Photosystem II was revealed in evolutionarily distant clades of organisms, i.e. cyanobacteria, algae and plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular oxygen (O2) is a key component in cellular respiration and aerobic life. Through the redox potential of O2, the amount of free energy available to organisms that utilize it is greatly increased. Yet, due to the nature of the O2 electron configuration, it is non-reactive to most organic molecules in the ground state. For O2 to react with most organic compounds it must be activated. By activating O2, oxygenases can catalyze reactions involving oxygen incorporation into organic compounds. The oxygen activation mechanisms employed by many oxygenases to have been studied, and they often include transition metals and selected organic compounds. Despite the diversity of mechanisms for O2 activation explored in this thesis, all of the monooxygenases studied in the experimental part activate O2 through a transient carbanion intermediate. One of these enzymes is the small cofactorless monooxygenase SnoaB. Cofactorless monooxygenases are unusual oxygenases that require neither transition metals nor cofactors to activate oxygen. Based on our biochemical characterization and the crystal structure of this enzyme, the mechanism most likely employed by SnoaB relies on a carbanion intermediate to activate oxygen, which is consistent with the proposed substrate-assisted mechanism for this family of enzymes. From the studies conducted on the two-component system AlnT and AlnH, both the functions of the NADH-dependent flavin reductase, AlnH, and the reduced flavin dependent monooxygenase, AlnT, were confirmed. The unusual regiochemistry proposed for AlnT was also confirmed on the basis of the structure of a reaction product. The mechanism of AlnT, as with other flavin-dependent monooxygenases, is likely to involve a caged radical pair consisting of a superoxide anion and a neutral flavin radical formed from an initial carbanion intermediate. In the studies concerning the engineering of the S-adenosyl-L-methionine (SAM) dependent 4-O-methylase DnrK and the homologous atypical 10-hydroxylase RdmB, our data suggest that an initial decarboxylation of the substrate is catalyzed by both of these enzymes, which results in the generation of a carbanion intermediate. This intermediate is not essential for the 4-O-methylation reaction, but it is important for the 10-hydroxylation reaction, since it enables substrate-assisted activation of molecular oxygen involving a single electron transfer to O2 from a carbanion intermediate. The only role for SAM in the hydroxylation reaction is likely to be stabilization of the carbanion through the positive charge of the cofactor. Based on the DnrK variant crystal structure and the characterizations of several DnrK variants, the insertion of a single amino acid in DnrK (S297) is sufficient for gaining a hydroxylation function, which is likely caused by carbanion stabilization through active site solvent restriction. Despite large differences in the three-dimensional structures of the oxygenases and the potential for multiple oxygen activation mechanisms, all the enzymes in my studies rely on carbanion intermediates to activate oxygen from either flavins or their substrates. This thesis provides interesting examples of divergent evolution and the prevalence of carbanion intermediates within polyketide biosynthesis. This mechanism appears to be recurrent in aromatic polyketide biosynthesis and may reflect the acidic nature of these compounds, propensity towards hydrogen bonding and their ability to delocalize π-electrons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanism whereby cytochrome £ oxidase catalyses elec-. tron transfer from cytochrome £ to oxygen remains an unsolved problem. Polarographic and spectrophotometric activity measurements of purified, particulate and soluble forms of beef heart mitochondrial cytochrome c oxidase presented in this thesis confirm the following characteristics of the steady-state kinetics with respect to cytochrome £: (1) oxidation of ferrocytochrome c is first order under all conditions. -(2) The relationship between sustrate concentration and velocity is of the Michaelis-Menten type over a limited range of substrate. concentrations at high ionic strength. (3) ~he reaction rate is independent from oxygen concentration until very low levels of oxygen. (4) "Biphasic" kinetic plots of enzyme activity as a function of substrate concentration are found when the range of cytochrome c concentrations is extended; the biphasicity ~ is more apparent in low ionic strength buffer. These results imply two binding sites for cytochrome £ on the oxidase; one of high affinity and one of low affinity with Km values of 1.0 pM and 3.0 pM, respectively, under low ionic strength conditions. (5) Inhibition of the enzymic rate by azide is non-c~mpetitive with respect to cytochrome £ under all conditions indicating an internal electron transfer step, and not binding or dissociation of £ from the enzyme is rate limiting. The "tight" binding of cytochrome '£ to cytochrome c oxidase is confirmed in column chromatographic experiments. The complex has a cytochrome £:oxidase ratio of 1.0 and is dissociated in media of high ionic strength. Stopped-flow spectrophotometric studies of the reduction of equimolar mixtures and complexes of cytochrome c and the oxidase were initiated in an attempt to assess the functional relevance of such a complex. Two alternative routes -for reduction of the oxidase, under conditions where the predominant species is the £ - aa3 complex, are postulated; (i) electron transfer via tightly bound cytochrome £, (ii) electron transfer via a small population of free cytochrome c interacting at the "loose" binding site implied from kinetic studies. It is impossible to conclude, based on the results obtained, which path is responsible for the reduction of cytochrome a. The rate of reduction by various reductants of free cytochrome £ in high and low ionic strength and of cytochrome £ electrostatically bound to cytochrome oxidase was investigated. Ascorbate, a negatively charged reagent, reduces free cytochrome £ with a rate constant dependent on ionic strength, whereas neutral reagents TMPD and DAD were relatively unaffected by ionic strength in their reduction of cytochrome c. The zwitterion cysteine behaved similarly to uncharged reductants DAD and TI~PD in exhibiting only a marginal response to ionic strength. Ascorbate reduces bound cytochrome £ only slowly, but DAD and TMPD reduce bound cytochrome £ rapidly. Reduction of cytochrome £ by DAD and TMPD in the £ - aa3 complex was enhanced lO-fold over DAD reduction of free £ and 4-fold over TMPD reduction of free c. Thus, the importance of ionic strength on the reactivity of cytochrome £ was observed with the general conclusion being that on the cytochrome £ molecule areas for anion (ie. phosphate) binding, ascorbate reduction and complexation to the oxidase overlap. The increased reducibility for bound cytochrome £ by reductants DAD and TMPD supports a suggested conformational change of electrostatically bound c compare.d to free .£. In addition, analysis of electron distribution between cytochromes £ and a in the complex suggest that the midpotential of cytochrome ~ changes with the redox state of the oxidase. Such evidence supports models of the oxidase which suggest interactions within the enzyme (or c - enzyme complex) result in altered midpoint potentials of the redox centers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A comprehensive elemental, isotopic and microstructural analyses was undertaken of brachiopod calcites from the Hamilton Group (Middle Devonian), Clinton Group (Middle Silurian) and Middle to Upper Ordovician strata of Ontario and New York State. The majority of specimens were microstructurally and chemically preserved in a pristine state, although a number of specimens show some degree of post-depositional alteration. Brachiopod calcites from the Hamilton and Clinton Groups were altered by marine derived waters whereas Trenton Group (Middle Ordovician) brachiopods altered in meteorically derived fluids. Analysis of the elemental and isotopic compositions of pristine Hamilton Group brachiopods indicates there are several chemical relationships inherent to brachiopod calcite. Taxonomic differentiation of Mg, Sr and Na contents was evident in three co-occuring species from the Hamilton Group. Mean Mg contents of pristine brachiopods were respectively Athyris spiriferoides (1309ppm), Mucrospirifer mucronatus (1035ppm) and Mediospirifer audacula (789ppm). Similarly, taxonomic differentiation of shell calcite compositions was observed in co-occuring brachiopods from the Clinton Group (Middle Silurian) and the Trenton Group (Middle Ordovician). The taxonomic control of elemental regulation into shell calcite is probably related to the slightly different physiological systems and secretory mechanisms. A relationship was observed in Hamilton Group species between the depth of respective brachiopod communities and their Mg, Sr and Na contents. These elements were depleted in the shell calcites of deeper brachiopods compared to their counterparts in shallower reaches. Apparently shell calcite elemental composition is related to environmental conditions of the depositional setting, which may have controlled the secretory regime, mineral morphology of shell calcite and precipitation rates of each species. Despite the change in Mg, Sr and Na contents between beds and formations in response to environmental conditions, the taxonomic differentiation of shell calcite composition is maintained. Thus, it may be possible to predict relative depth changes in paleoenvironmental reconstructions using brachiopod calcite. This relationship of brachiopod chemistry to depth was also tested within a transgressiveregressive (T-R) cycle in the Rochester Shale Formation (Middle Silurian). Decreasing Mg, Sr and Na contents were observed in the transition from the shallow carbonates of the Irondequoit Formation to the deeper shales of the lowest 2 m of Rochester Shale. However, no isotopic and elemental trends were observed within the entire T-R cycle which suggests that either the water conditions did not change significantly or that the cycle is illusory. A similar relationship was observed between the Fe and Mn chemistries of shell calcite and redox/paleo-oxygen conditions. Hamilton Group brachiopods analysed from deeper areas of the shelf are enriched in Mn and Fe relative to those from shallow zones. The presence of black shales and dysaerobic faunas, during deposition of the Hamilton Group, suggests that the waters of the northern Appalachian Basin were stratified. The deeper brachiopods were marginally positioned above an oxycline and their shell calcites reflect periodic incursions of oxygen depleted water. Furthermore, analysis of Dalmanella from the black shales of the Collingwood Shale (Upper Ordovician) in comparison to those from the carbonates of the Verulam Formation (Middle Ordovician) confirm the relationship of Fe and Mn contents to periodic but not permanent incursions of low oxygen waters. The isotopic compositions of brachiopod calcite found in Hamilton Group (813C; +2.5% 0 to +5.5% 0; 8180 -2.50/00 to -4.00/00) and Clinton Group (813C; +4.00/00 to +6.0; 8180; -1.8% 0 to -3.60/ 00) are heavier than previously reported. Uncorrected paleotemperatures (assuming normal salinity, 0% 0 SMOW and no fractionation effects) derived from these isotopic values suggest that the Clinton sea temperature (Middle Silurian) ranged from 18°C to 28°C and Hamilton seas (Middle Devonian) ranged between 24°C and 29°C. In addition, the isotopic variation of brachiopod shell calcite is significant and is related to environmental conditions. Within a single time-correlative shell bed (the Demissa Bed; Hamilton Group) a positive isotopic shift of 2-2.5% 0 in 013C compositions and a positive shift of 1.0-1.50/00 in 0180 composition of shell calcite is observed, corresponding with a deepening of brachiopod habitats toward the axis of the Appalachian Basin. Moroever, a faunal succession from deeper Ambocoelia dominated brachiopod association to a shallow Tropidoleptus dominated assocation is reflected by isotopic shifts of 1.0-1.50/00. Although, other studies have emphasized the significance of ±20/oo shifts in brachiopod isotopic compositions, the recognition of isotopic variability in brachiopod calcite within single beds and within depositional settings such as the Appalachian Basin has important implications for the interpretation of secular isotopic trends. A significant proportion of the variation observed isotopic distribution during the Paleozoic is related to environmental conditions within the depositional setting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Higher plants have evolved a well-conserved set of photoprotective mechanisms, collectively designated Non-Photochemical Quenching of chlorophyll fluorescence (qN), to deal with the inhibitory absorption of excess light energy by the photosystems. Their main contribution originates from safe thermal deactivation of excited states promoted by a highly-energized thylakoid membrane, detected via lumen acidification. The precise origins of this energy- or LlpH-dependent quenching (qE), arising from either decreased energy transfer efficiency in PSII antennae (~ Young & Frank, 1996; Gilmore & Yamamoto, 1992; Ruban et aI., 1992), from alternative electron transfer pathways in PSII reaction centres (~ Schreiber & Neubauer, 1990; Thompson &Brudvig, 1988; Klimov et aI., 1977), or from both (Wagner et aI., 1996; Walters & Horton, 1993), are a source of considerable controversy. In this study, the origins of qE were investigated in spinach thylakoids using a combination of fluorescence spectroscopic techniques: Pulse Amplitude Modulated (PAM) fluorimetry, pump-probe fluorimetry for the measurement of PSII absorption crosssections, and picosecond fluorescence decay curves fit to a kinetic model for PSII. Quenching by qE (,..,600/0 of maximal fluorescence, Fm) was light-induced in circulating samples and the resulting pH gradient maintained during a dark delay by the lumenacidifying capabilities of thylakoid membrane H+ ATPases. Results for qE were compared to those for the addition of a known antenna quencher, 5-hydroxy-1,4naphthoquinone (5-0H-NQ), titrated to achieve the same degree of Fm quenching as for qE. Quenching of the minimal fluorescence yield, F0' was clear (8 to 130/0) during formation of qE, indicative of classical antenna quenching (Butler, 1984), although the degree was significantly less than that achieved by addition of 5-0H-NQ. Although qE induction resulted in an overall increase in absorption cross-section, unlike the decrease expected for antenna quenchers like the quinone, a larger increase in crosssection was observed when qE induction was attempted in thylakoids with collapsed pH gradients (uncoupled by nigericin), in the absence of xanthophyll cycle operation (inhibited by DTT), or in the absence of quenching (LlpH not maintained in the dark due to omission of ATP). Fluorescence decay curves exhibited a similar disparity between qE-quenched and 5-0H-NQ-quenched thylakoids, although both sets showed accelerated kinetics in the fastest decay components at both F0 and Fm. In addition, the kinetics of dark-adapted thylakoids were nearly identical to those in qEquenched samples at F0' both accelerated in comparison with thylakoids in which the redox poise of the Oxygen-Evolving Complex was randomized by exposure to low levels of background light (which allowed appropriate comparison with F0 yields from quenched samples). When modelled with the Reversible Radical Pair model for PSII (Schatz et aI., 1988), quinone quenching could be sufficiently described by increasing only the rate constant for decay in the antenna (as in Vasil'ev et aI., 1998), whereas modelling of data from qE-quenched thylakoids required changes in both the antenna rate constant and in rate constants for the reaction centre. The clear differences between qE and 5-0H-NQ quenching demonstrated that qE could not have its origins in the antenna alone, but is rather accompanied by reaction centre quenching. Defined mechanisms of reaction centre quenching are discussed, also in relation to the observed post-quenching depression in Fm associated with photoinhibition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study was undertaken to ascertain whether meromictic lakes could be differentiated from holomictic lakes on the basis of their surficial profundal sediments. Surface sediment cores (15 cm long) were collected from both the littoral and profundal zones of four meromictic and six holomictic lakes and analyzed for total number of fossil chironomid headcapsu~es, chlorophyll and carotenoid degradation products as well as \ iron and manganese concentrations. Littoral and profundal comparisons of the surface sediments were made between the two lake types using the Mann-Whitney U test. Iron, manganese and the iron to manganese ratio in the littoral sediments of meromictic lakes were significantly lower than those found in the littoral sediments of holomictic lakes. The observed differences are believed to represent an artifact of the significantly higher carbonate concentrations found in three of the four meromictic lakes studied. Profundal and littoral to profundal ratio comparison between holomictic and meromictic lakes suggest that the significantly lower iron and higher carotenoid concentrations in meromictic profundal sediments were a con~equence of meromixis. However, the overlap in distribution exhibited by both iron and carotenoid degradation products between the two lake types was sufficiently large in this study to nullify their use as a means of differentiating meromictic from holomictic lakes. A long core (4.25 m) was removed from the deepest part of the meromictic Crawford Lake (Ontario), sectioned at 5 cm intervals, and analyzed to assess when meromixis occurred, based on its fossil record. Temporal changes in the total number of chironomid headcapsules, and chlorophyll and carotenoid sediment degradation products were closely correlated with organic matter, indicating in my opinion that extensive redeposition of littoral chironomid headcapsules in the profundal zone has occurred. Temporal variations in carotenoid degradation products, in response to changes in organic matter, obscured increased preservation that may have occurred as a consequence of meromixis. Temporal variations in iron and manganese suggest that relatively stable redox conditions have existed throughout most of the lake's history. Therefore it would appear that Crawford Lake has been meromictic since its inception.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytochrome c oxidase .inserted into proteoliposomes translocates protons with a stoichiometry of approx-, imately 0.4-0.6 H+/e- in the presence of valinomycin plus pottasium. The existance .ofsuchproton translocation is .supportedby experiments with lauryl maltoside which abolished the pulses but~~d not inhibit cyt. c binding .or oxidase turnover. Pulses with K3FeCN6 did not induce acidification further supporting vectorial proton transport by cyt ..aa3 . Upon lowering the ionic strength and pulsing with ferrocytochrome c, H+/eratios increased. This increase is attributed to scaler proton release consequent upon cyt.c-phospholipid binding. Oxygen pulses at low ionic strength however did not exhibit this large scaler increase in H+/e- ratios.A-small increase was observed upon .02 pul'sing at·low ionic strengt.h. This increase was KeN and, ,pcep sensitive and thus possibly due to a redox linked scaler deprotonation. Increases in the H+/e- ratio also occurred ifp~lses ,were performed in the presence of nonactin rather.than valinomycin. The fluorescent pH indicator pyranine was internally trapped inaa3 conta~ning "proteoliposomes. Internal alkalinization, as mon,itored by pyranine fluorescence leads to a of approx.imately 0.35 units, which is proportional to electron flux. This internal alkalinization was also DCCD sensitive, being inhibited by approximately 50%. This 50% inhibition of internal alkalinization supports the existance of vectorial proton transport.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phenolic compounds are important components of grapes and wines. They have been found to have important roles in grape and wine systems and properties that are beneficial for human health. Vanillin (3-methoxy-4-hydroxybenzaldehyde) is a phenolic compound coming from the oxidative degradation of lignin in oak-barrels during the aging of wine. Vanillin is an important flavour component of wine and its concentration in wine influences significantly the aroma and flavour of wine. The concentration of vanillin in wine is affected by various factors including the presence of metal ions. In this work, by using HPLC, HPLC-MS, and MS technologies, iron (III) cations were found to affect the oxidation of vanillin in a model system of wine, and the product of the oxidation was identified as divanillin. The mechanism of the redox reaction between vanillin and Fe^"^ is thought to follow that of other phenol oxidations. Increasing the concentration of Fe ^ in the model system accelerates divanillin production. The best pH condition for the divanillin production in the system is the range of 3.0 ~ 3.5. Increasing temperature from 20°C to 40°C accelerates the divanillin production. Divanillin was found to exist in three commercial red wines in this work. Keeping the storage temperature cool and decreasing the contact of grapes and wines with iron are two major measures suggested by this work in order to decrease the oxidation of vanillin during the making and aging of wine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arabidopsis thaliana is an established model plant system for studying plantpathogen interactions. The knowledge garnered from examining the mechanism of induced disease resistance in this model system can be applied to eliminate the cost and danger associated with current means of crop protection. A specific defense pathway, known as systemic acquired resistance (SAR), involves whole plant protection from a wide variety of bacterial, viral and fungal pathogens and remains induced weeks to months after being triggered. The ability of Arabidopsis to mount SAR depends on the accumulation of salicylic acid (SA), the NPRI (non-expressor of pathogenesis related gene 1) protein and the expression of a subset of pathogenesis related (PR) genes. NPRI exerts its effect in this pathway through interaction with a closely related class of bZIP transcription factors known as TGA factors, which are named for their recognition of the cognate DNA motif TGACG. We have discovered that one of these transcription factors, TGA2, behaves as a repressor in unchallenged Arabidopsis and acts to repress NPRI-dependent activation of PRJ. TGA1, which bears moderate sequence similarity to TGA2, acts as a transcriptional activator in unchallenged Arabidopsis, however the significance of this activity is J unclear. Once SAR has been induced, TGAI and TGA2 interact with NPRI to form complexes that are capable of activating transcription. Curiously, although TGAI is capable of transactivating, the ability of the TGAI-NPRI complex to activate transcription results from a novel transactivation domain in NPRI. This transactivation domain, which depends on the oxidation of cysteines 521 and 529, is also responsible for the transactivation ability of the TGA2-NPRI complex. Although the exact mechanism preventing TGA2-NPRI interaction in unchallenged Arabidopsis is unclear, the regulation of TGAI-NPRI interaction is based on the redox status of cysteines 260 and 266 in TGAl. We determined that a glutaredoxin, which is an enzyme capable of regulating a protein's redox status, interacts with the reduced form of TGAI and this interaction results .in the glutathionylation of TGAI and a loss of interaction with NPRl. Taken together, these results expand our understanding of how TGA transcription factors and NPRI behave to regulate events and gene expression during SAR. Furthermore, the regulation of the behavior of both TGAI and NPRI by their redox status and the involvement of a glutaredoxin in modulating TGAI-NPRI interaction suggests the redox regulation of proteins is a general mechanism implemented in SAR.