888 resultados para Holomorphic Cliffordian Functions
Resumo:
The results in this paper are motivated by two analogies. First, m-harmonic functions in R(n) are extensions of the univariate algebraic polynomials of odd degree 2m-1. Second, Gauss' and Pizzetti's mean value formulae are natural multivariate analogues of the rectangular and Taylor's quadrature formulae, respectively. This point of view suggests that some theorems concerning quadrature rules could be generalized to results about integration of polyharmonic functions. This is done for the Tchakaloff-Obrechkoff quadrature formula and for the Gaussian quadrature with two nodes.
Resumo:
The purpose of this research was to verify the effect of age on the exponent of the power function in Perceptive, Memory, and Inference experimental conditions. In the Memory condition the intervals of 2 min., 8, 24, and 48 hr. and 1 wk. were used between acquisition of information and remembering. For each experimental condition the ages of observers ranged between 17 and 35 years (Group I), 40-55 years (Group II), and 60-77 years (Group III), and education ranged from high school to graduate school. The observers estimated the areas of the Brazilian states using the psychophysical method of magnitude estimation. No significant differences were obtained for Groups I, II, and III for each experimental condition, except in the Memory Condition with the 24-hr. interval. Analysis for experimental conditions and ages showed a significant difference between the Perceptive Condition and each of the others, but no difference between the Inference and Memory Conditions. These results indicated that in the remembering processes there is no loss of information as a function of age. From the small variability in the power function exponents for the three ages, we may assume that age could be related to amount of education of the observers, which suggests study is important.
Resumo:
Searching for an understanding of how the brain supports conscious processes, cognitive scientists have proposed two main classes of theory: Global Workspace and Information Integration theories. These theories seem to be complementary, but both still lack grounding in terms of brain mechanisms responsible for the production of coherent and unitary conscious states. Here we propose following James Robertson's "Astrocentric Hypothesis" - that conscious processing is based on analog computing in astrocytes. The "hardware" for these computations is calcium waves mediated by adenosine triphosphate signaling. Besides presenting our version of this hypothesis, we also review recent findings on astrocyte morphology that lend support to their functioning as Local Hubs (composed of protoplasmic astrocytes) that integrate synaptic activity, and as a Master Hub (composed, in the human brain, by a combination of interlaminar, fibrous, polarized and varicose projection astrocytes) that integrates whole-brain activity.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
It is shown that the paper Wave functions for a Duffin-Kemmer-Petiau particle in a time-dependent potential by Merad and Bensaid [J. Math. Phys. 48, 073515 (2007)] is not correct in using inadvertently a non-Hermitian Hamiltonian in a formalism that does require Hermitian Hamiltonians.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We defined generalized Heaviside functions for a variable x in R-n, and for variables (x, t) in R-n x R-m. Then study properties such as: composition, invertibility, and association relation (the weak equality). This work is developed in the Colombeau generalized functions context.
Resumo:
We calculate three- and four-point functions in super Liouville theory coupled to a super Coulomb gas on world sheets with spherical topology. We first integrate over the zero mode and assume that a parameter takes an integer value. We find the amplitudes, give plausibility arguments in favor of the result, and formally continue the parameter to an arbitrary real number. Remarkably the result is completely parallel to the bosonic case.
Resumo:
The Green's functions of the recently discovered conditionally exactly solvable potentials are computed. This is done through the use of a second-order differential realization of the so(2,1) Lie algebra. So we present the dynamical symmetry underlying the solvability of such potentials and show that they belong to a general class of solvable and partially solvable potentials. © 1994 The American Physical Society.
Resumo:
We consider the Hamiltonian reduction of the two-loop Wess-Zumino-Novikov-Witten model (WZNW) based on an untwisted affine Kac-Moody algebra script Ĝ. The resulting reduced models, called Generalized Non-Abelian Conformal Affine Toda (G-CAT), are conformally invariant and a wide class of them possesses soliton solutions; these models constitute non-Abelian generalizations of the conformal affine Toda models. Their general solution is constructed by the Leznov-Saveliev method. Moreover, the dressing transformations leading to the solutions in the orbit of the vacuum are considered in detail, as well as the τ-functions, which are defined for any integrable highest weight representation of script Ĝ, irrespectively of its particular realization. When the conformal symmetry is spontaneously broken, the G-CAT model becomes a generalized affine Toda model, whose soliton solutions are constructed. Their masses are obtained exploring the spontaneous breakdown of the conformal symmetry, and their relation to the fundamental particle masses is discussed. We also introduce what we call the two-loop Virasoro algebra, describing extended symmetries of the two-loop WZNW models.
Resumo:
The solutions of a large class of hierarchies of zero-curvature equations that includes Toda- and KdV-type hierarchies are investigated. All these hierarchies are constructed from affine (twisted or untwisted) Kac-Moody algebras g. Their common feature is that they have some special vacuum solutions corresponding to Lax operators lying in some Abelian (up to the central term) subalgebra of g; in some interesting cases such subalgebras are of the Heisenberg type. Using the dressing transformation method, the solutions in the orbit of those vacuum solutions are constructed in a uniform way. Then, the generalized tau-functions for those hierarchies are defined as an alternative set of variables corresponding to certain matrix elements evaluated in the integrable highest-weight representations of g. Such definition of tau-functions applies for any level of the representation, and it is independent of its realization (vertex operator or not). The particular important cases of generalized mKdV and KdV hierarchies as well as the Abelian and non-Abelian affine Toda theories are discussed in detail. © 1997 American Institute of Physics.
Resumo:
We present predictions for the spin structure functions of the proton in the framework of a unitary isobar model for one-pion photo- and electroproduction. Our results are compared with recent experimental data from SLAC. The first moments of the calculated structure functions fullfil the Gerasimov-Drell-Hearn and Burkhardt-Cottingham sum rules within an error of typically 5-10%.
Resumo:
A mapping that relates the Wigner phase-space distribution function of a given stationary quantum mechani-cal wave function, a solution of the Schrödinger equation, to a specific solution of the Liouville equation, both subject to the same potential, is studied. By making this mapping, bound states are described by semiclassical distribution functions still depending on Planck's constant, whereas for elastic scattering of a particle by a potential they do not depend on it, the classical limit being reached in this case. Following this method, the mapped distributions of a particle bound in the Pöschl-Teller potential and also in a modified oscillator potential are obtained.