922 resultados para High-speed equipment


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dynamic compressive response of corrugated carbon-fibre reinforced epoxy sandwich cores has been investigated using a Kolsky-bar set-up. Compression at quasi-static rates up to v 0=200ms -1 have been tested on three different slenderness ratios of strut. High speed photography was used to capture the failure mechanisms and relate these to the measured axial compressive stress. Experiments show significant strength enhancement as the loading rate increases. Although material rate sensitivity accounts for some of this, it has been shown that the majority of the strength enhancement is due to inertial stabilisation of the core members. Inertial strength enhancement rises non-linearly with impact velocity. The largest gains are associated with a shift to buckle modes composed of 2-3 half sine waves. The loading rates tested within this study are similar to those that are expected when a sandwich core is compressed due to a blast event. © 2012 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper investigates the possibility of improving the performance of railway vehicle suspensions by incorporating a newly developed mechanical device known as the inerter. A comparative study of several low-complexity passive suspension layouts is made. Improved performance for the lateral and vertical ride comfort, as well as lateral body movement when curving are demonstrated in comparison with the conventional suspension layout. The constraints imposed are to maintain the same level of other performance metrics. The calculations and optimisations are based on linearised plan-view and side-view high-speed train mathematical models. © 2012 Copyright Taylor and Francis Group, LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper explores the ignition and subsequent evolution of spray flames in a bluff-body configuration with and without swirl. Ethanol and n-heptane are used to compare the effects of volatility. Ignition is performed by a laser spark. High speed imaging of OH *-chemiluminescence and OH-PLIF collected at 5kHz are used to investigate the behaviour of the flames during the first stages of ignition and the stable flame structure following ignition. Swirl induces a wider and shorter flame, precession, and multiple reaction zones, while the non-swirling flames have a simpler structure. The reaction fronts seem thinner with ethanol than with heptane. The dataset can be used for model validation. © 2012 Elsevier Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The final stages of pinchoff and breakup of dripping droplets of near-inviscid Newtonian fluids are studied experimentally for pure water and ethanol. High-speed imaging and image analysis are used to determine the angle and the minimum neck size of the cone-shaped extrema of the ligaments attached to dripping droplets in the final microseconds before pinchoff. The angle is shown to steadily approach the value of 18.0 ± 0.4°, independently of the initial flow conditions or the type of breakup. The filament thins and necks following a τ(2/3) law in terms of the time remaining until pinchoff, regardless of the initial conditions. The observed behavior confirms theoretical predictions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The demand for high-speed optical links within local-area networks and storage-area networks continues to grow rapidly, with standards under development that demand single-wavelength solutions at data rates of 30 Gb/s and beyond. Robust low-cost schemes are required, with a particular emphasis on multimode-fibre links using optical transceivers based on vertical-cavity surface-emitting lasers. © 2012 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interaction phenomena of nanosecond Q-switched diode-pumped solid state (DPSS) laser using 355nm radiation with 0.2mm thick 316L stainless steel foil was investigated at incident laser fluence range of 19 - 82Jcm-2. The characterization study was performed with and without the use of assist gas by utilizing micro supersonic minimum length nozzles (MLN), specifically designed for air at inlet chamber pressure of 8bar. MLN ranged in throat diameters of 200μm, 300μm, and 500μm respectively. Average etch rate per pulse under the influence of three micro supersonic impinging jets, for both oxygen and air showed the average etch rate was reduced when high-speed gas jets were utilized, compared to that without any gas jets, but significant variation was noticed between different jet sizes. Highest etch rate and quality was achieved with the smallest diameter nozzle, suggesting that micro nozzles can produce a viable process route for micro laser cutting.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Visual recognition problems often involve classification of myriads of pixels, across scales, to locate objects of interest in an image or to segment images according to object classes. The requirement for high speed and accuracy makes the problems very challenging and has motivated studies on efficient classification algorithms. A novel multi-classifier boosting algorithm is proposed to tackle the multimodal problems by simultaneously clustering samples and boosting classifiers in Section 2. The method is extended into an online version for object tracking in Section 3. Section 4 presents a tree-structured classifier, called Super tree, to further speed up the classification time of a standard boosting classifier. The proposed methods are demonstrated for object detection, tracking and segmentation tasks. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interplay between robotics and neuromechanics facilitates discoveries in both fields: nature provides roboticists with design ideas, while robotics research elucidates critical features that confer performance advantages to biological systems. Here, we explore a system particularly well suited to exploit the synergies between biology and robotics: high-speed antenna-based wall following of the American cockroach (Periplaneta americana). Our approach integrates mathematical and hardware modeling with behavioral and neurophysiological experiments. Specifically, we corroborate a prediction from a previously reported wall-following template - the simplest model that captures a behavior - that a cockroach antenna-based controller requires the rate of approach to a wall in addition to distance, e.g., in the form of a proportional-derivative (PD) controller. Neurophysiological experiments reveal that important features of the wall-following controller emerge at the earliest stages of sensory processing, namely in the antennal nerve. Furthermore, we embed the template in a robotic platform outfitted with a bio-inspired antenna. Using this system, we successfully test specific PD gains (up to a scale) fitted to the cockroach behavioral data in a "real-world" setting, lending further credence to the surprisingly simple notion that a cockroach might implement a PD controller for wall following. Finally, we embed the template in a simulated lateral-leg-spring (LLS) model using the center of pressure as the control input. Importantly, the same PD gains fitted to cockroach behavior also stabilize wall following for the LLS model. © 2008 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A method and device for periodically perturbing the flow field within a microfluidic device to provide regular droplet formation at high speed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper the global flame dynamics of a model annular gas turbine combustor undergoing strong self-excited circumferential instabilities is presented. The combustor consisted of either 12, 15 or 18 turbulent premixed bluff-body flames arranged around an annulus of fixed circumference so that the effect of flame separation distance, S, on the global heat release dynamics could be investigated. Reducing S was found to produce both an increase in the resonant frequency and the limit-cycle amplitudes of pressure and heat release for the same equivalence ratio. The phase-averaged global heat release, obtained from high-speed OH- chemiluminescence imaging from above, showed that these changes are caused by large-scale modifications to the flame structure around the annulus. For the largest S studied (12 flame configuration) the azimuthal instability produced a helical-like global heat release structure for each flame. When S was decreased, large-scale merging or linking between adjacent flames occurred spanning approximately half of the annulus with the peak heat release concentrated at the outer annular wall. The circumferential nature of the instability was evident from both the pressure measurements and the phase-averaged OH- chemiluminescence showing the phase of the heat release on either side of the annulus to be ≈180°apart and spinning in the counter clockwise direction. Both spinning and standing modes were found but only spinning modes are considered in this paper. To the best of the authors knowledge, these are the first experiments to provide a phase-averaged picture of self-excited azimuthal instabilities in a laboratory-scale annular combustor relevant to gas turbines. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the major challenges in high-speed fan stages used in compact, embedded propulsion systems is inlet distortion noise. A body-force-based approach for the prediction of multiple-pure-tone (MPT) noise was previously introduced and validated. In this paper, it is employed with the objective of quantifying the effects of nonuniform flow on the generation and propagation of MPT noise. First-of-their-kind back-to-back coupled aero-acoustic computations were carried out using the new approach for conventional and serpentine inlets. Both inlets delivered flow to the same NASA/GE R4 fan rotor at equal corrected mass flow rates. Although the source strength at the fan is increased by 38 dB in sound power level due to the nonuniform inflow, far-field noise for the serpentine inlet duct is increased on average by only 3.1 dBA overall sound pressure level in the forward arc. This is due to the redistribution of acoustic energy to frequencies below 11 times the shaft frequency and the apparent cut-off of tones at higher frequencies including blade-passing tones. The circumferential extent of the inlet swirl distortion at the fan was found to be two blade pitches, or 1/11th of the circumference, suggesting a relationship between the circumferential extent of the inlet distortion and the apparent cut-off frequency perceived in the far field. A first-principles-based model of the generation of shock waves from a transonic rotor in nonuniform flow showed that the effects of nonuniform flow on acoustic wave propagation, which cannot be captured by the simplified model, are more dominant than those of inlet flow distortion on source noise. It demonstrated that nonlinear, coupled aerodynamic and aero-acoustic computations, such as those presented in this paper, are necessary to assess the propagation through nonuniform mean flow. A parametric study of serpentine inlet designs is underway to quantify these propagation effects. © 2013 American Society of Mechanical Engineers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Antenna-coupled field effect transistors have been developed as plasma-wave THz detectors in both InAs nanowire and graphene channel material. Room temperature operation has been achieved up to frequencies of 1.5 THz, with noise equivalent powers as low as a few 10-11 W/Hz1/2, and high-speed response. © 2012 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Construction of geotechnical structures produces various environmental impacts. These include depletion of limited natural resources, generation of wastes and harmful substances during material productions and construction, ineffective usage of energy during processing of raw materials into construction materials, and emissions of unwanted gasses during transportation of materials and usage of equipments. With increasing interests in sustainability at the global scale, there is a need to develop a methodology that can assess environmental impacts at such scale for geotechnical construction. Using embodied energy and gas emission, quantitative measures of environmental impact are evaluated using a case study of a new high speed railway line construction in the UK. Based on the results, the keys to energy savings are (a) to optimise the usage of materials with high embodied energy intensity value (b) to optimise the transportation network and logistics for processes using primarily low embodied energy intensity materials and (c) to reuse as much materials on-site as possible to minimise the quantity of spoils or distance to disposal sites. The evaluated embodied energy and embodied carbon values are compared to those of other types of structures and of other activities and carbon tax values. Such comparisons can be used to discuss among various interested parties (clients, contractors, consultants, policy makers, etc) to make the construction industry more energy efficient. © Springer Science+Business Media B.V. 2011.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Time-resolved particle image velocimetry (PIV) has been performed inside the nozzle of a commercially available inkjet print-head to obtain the time-dependent velocity waveform. A printhead with a single transparent nozzle 80 μm in orifice diameter was used to eject single droplets at a speed of 5 m/s. An optical microscope was used with an ultra-high-speed camera to capture the motion of particles suspended in a transparent liquid at the center of the nozzle and above the fluid meniscus at a rate of half a million frames per second. Time-resolved velocity fields were obtained from a fluid layer approximately 200 μm thick within the nozzle for a complete jetting cycle. A Lagrangian finite-element numerical model with experimental measurements as inputs was used to predict the meniscus movement. The model predictions showed good agreement with the experimental results. This work provides the first experimental verification of physical models and numerical simulations of flows within a drop-on-demand nozzle. © 2012 Society for Imaging Science and Technology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The airflow between the fast-moving substrate and stationary print heads in a web print press may cause print quality issues in high-speed, roll-to-roll printing applications. We have studied the interactions between ink drops and the airflow in the gap between the printhead and substrate, by using an experimental flow channel and high-speed imaging. The results show: 1) the gap airflow is well approximated by a standard Couette flow profile; 2) the effect of gap airflow on the flight paths of main drops and satellites is negligible; and 3) the interaction between the gap airflow and the wakes from the printed ink drops should be investigated as the primary source of aerodynamically- related print quality issues. ©2012 Society for Imaging Science and Technology.