894 resultados para Heterogeneous Cellular Automaton
Resumo:
A chaotic encryption algorithm is proposed based on the "Life-like" cellular automata (CA), which acts as a pseudo-random generator (PRNG). The paper main focus is to use chaos theory to cryptography. Thus, CA was explored to look for this "chaos" property. This way, the manuscript is more concerning on tests like: Lyapunov exponent, Entropy and Hamming distance to measure the chaos in CA, as well as statistic analysis like DIEHARD and ENT suites. Our results achieved higher randomness quality than others ciphers in literature. These results reinforce the supposition of a strong relationship between chaos and the randomness quality. Thus, the "chaos" property of CA is a good reason to be employed in cryptography, furthermore, for its simplicity, low cost of implementation and respectable encryption power. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Abstract Background The etiology of Bell's palsy can vary but anterograde axonal degeneration may delay spontaneous functional recovery leading the necessity of therapeutic interventions. Corticotherapy and/or complementary rehabilitation interventions have been employed. Thus the natural history of the disease reports to a neurotrophic resistance of adult facial motoneurons leading a favorable evolution however the related molecular mechanisms that might be therapeutically addressed in the resistant cases are not known. Fibroblast growth factor-2 (FGF-2) pathway signaling is a potential candidate for therapeutic development because its role on wound repair and autocrine/paracrine trophic mechanisms in the lesioned nervous system. Methods Adult rats received unilateral facial nerve crush, transection with amputation of nerve branches, or sham operation. Other group of unlesioned rats received a daily functional electrical stimulation in the levator labii superioris muscle (1 mA, 30 Hz, square wave) or systemic corticosterone (10 mgkg-1). Animals were sacrificed seven days later. Results Crush and transection lesions promoted no changes in the number of neurons but increased the neurofilament in the neuronal neuropil of axotomized facial nuclei. Axotomy also elevated the number of GFAP astrocytes (143% after crush; 277% after transection) and nuclear FGF-2 (57% after transection) in astrocytes (confirmed by two-color immunoperoxidase) in the ipsilateral facial nucleus. Image analysis reveled that a seven days functional electrical stimulation or corticosterone led to elevations of FGF-2 in the cytoplasm of neurons and in the nucleus of reactive astrocytes, respectively, without astrocytic reaction. Conclusion FGF-2 may exert paracrine/autocrine trophic actions in the facial nucleus and may be relevant as a therapeutic target to Bell's palsy.
Resumo:
Abstract Background Leishmania parasites are transmitted to their vertebrate hosts by infected Phlebotomine sand flies during the blood meal of the flies. Sand fly saliva is known to enhance Leishmania spp. infection, while pre-exposure to saliva protects mice against parasitic infections. In this study, we investigated the initial inflammatory leucocyte composition induced by one or three inocula of salivary gland extract (SGE) from Lutzomyia longipalpis in the presence or absence of Leishmania braziliensis. Results We demonstrated that inoculating SGE once (SGE-1X) or three times (SGE-3X), which represented a co-inoculation or a pre-exposure to saliva, respectively, resulted in different cellular infiltrate profiles. Whereas SGE-1X led to the recruitment of all leucocytes subtypes including CD4+ T cells, CD4+CD25+ T cells, dendritic cells, macrophages and neutrophils, the immune cell profile in the SGE-3X group differed dramatically, as CD4+ T cells, CD4+CD25+ T cells, dendritic cells, macrophages and neutrophils were decreased and CD8+ T cells were increased. The SGE-1X group did not show differences in the ear lesion size; however, the SGE-1X group harbored a higher number of parasites. On the other hand, the SGE-3X group demonstrated a protective effect against parasitic disease, as the parasite burden was lower even in the earlier stages of the infection, a period in which the SGE-1X group presented with larger and more severe lesions. These effects were also reflected in the cytokine profiles of both groups. Whereas the SGE-1X group presented with a substantial increase in IL-10 production, the SGE-3X group showed an increase in IFN-γ production in the draining lymph nodes. Analysis of the inflammatory cell populations present within the ear lesions, the SGE-1X group showed an increase in CD4+FOXP3+ cells, whereas the CD4+FOXP3+ population was reduced in the SGE-3X group. Moreover, CD4+ T cells and CD8+ T cells producing IFN-γ were highly detected in the ears of the SGE-3X mice prior to infection. In addition, upon treatment of SGE-3X mice with anti-IFN-γ monoclonal antibody, we observed a decrease in the protective effect of SGE-3X against L. braziliensis infection. Conclusions These results indicate that different inocula of Lutzomyia longipalpis salivary gland extract can markedly modify the cellular immune response, which is reflected in the pattern of susceptibility or resistance to Leishmania braziliensis infection.
Resumo:
Abstract Background Plasmodium vivax merozoite surface protein-1 (MSP-1) is an antigen considered to be one of the leading malaria vaccine candidates. PvMSP-1 is highly immunogenic and evidences suggest that it is target for protective immunity against asexual blood stages of malaria parasites. Thus, this study aims to evaluate the acquired cellular and antibody immune responses against PvMSP-1 in individuals naturally exposed to malaria infections in a malaria-endemic area in the north-eastern Amazon region of Brazil. Methods The study was carried out in Paragominas, Pará State, in the Brazilian Amazon. Blood samples were collected from 35 individuals with uncomplicated malaria. Peripheral blood mononuclear cells were isolated and the cellular proliferation and activation was analysed in presence of 19 kDa fragment of MSP-1 (PvMSP-119) and Plasmodium falciparum PSS1 crude antigen. Antibodies IgE, IgM, IgG and IgG subclass and the levels of TNF, IFN-γ and IL-10 were measured by enzyme-linked immunosorbent assay. Results The prevalence of activated CD4+ was greater than CD8+ T cells, in both ex-vivo and in 96 h culture in presence of PvMSP-119 and PSS1 antigen. A low proliferative response against PvMSP-119 and PSS1 crude antigen after 96 h culture was observed. High plasmatic levels of IFN-γ and IL-10 as well as lower TNF levels were also detected in malaria patients. However, in the 96 h supernatant culture, the dynamics of cytokine responses differed from those depicted on plasma assays; in presence of PvMSP-119 stimulus, higher levels of TNF were noted in supernatant 96 h culture of malaria patient’s cells while low levels of IFN-γ and IL-10 were verified. High frequency of malaria patients presenting antibodies against PvMSP-119 was evidenced, regardless class or IgG subclass.PvMSP-119-induced antibodies were predominantly on non-cytophilic subclasses. Conclusions The results presented here shows that PvMSP-119 was able to induce a high cellular activation, leading to production of TNF and emphasizes the high immunogenicity of PvMSP-119 in naturally exposed individuals and, therefore, its potential as a malaria vaccine candidate.
Resumo:
Craniofrontonasal syndrome (CFNS), an X-linked disorder caused by loss-of-function mutations of EFNB1, exhibits a paradoxical sex reversal in phenotypic severity: females characteristically have frontonasal dysplasia, craniosynostosis and additional minor malformations, but males are usually more mildly affected with hypertelorism as the only feature. X-inactivation is proposed to explain the more severe outcome in heterozygous females, as this leads to functional mosaicism for cells with differing expression of EPHRIN-B1, generating abnormal tissue boundaries-a process that cannot occur in hemizygous males. Apparently challenging this model, males occasionally present with a more severe female-like CFNS phenotype. We hypothesized that such individuals might be mosaic for EFNB1 mutations and investigated this possibility in multiple tissue samples from six sporadically presenting males. Using denaturing high performance liquid chromatography, massively parallel sequencing and multiplex-ligation-dependent probe amplification (MLPA) to increase sensitivity above standard dideoxy sequencing, we identified mosaic mutations of EFNB1 in all cases, comprising three missense changes, two gene deletions and a novel point mutation within the 5' untranslated region (UTR). Quantification by Pyrosequencing and MLPA demonstrated levels of mutant cells between 15 and 69%. The 5' UTR variant mutates the stop codon of a small upstream open reading frame that, using a dual-luciferase reporter construct, was demonstrated to exacerbate interference with translation of the wild-type protein. These results demonstrate a more severe outcome in mosaic than in constitutionally deficient males in an X-linked dominant disorder and provide further support for the cellular interference mechanism, normally related to X-inactivation in females.
Resumo:
This paper emphasizes the influence of micro mechanisms of failure of a cellular material on its phenomenological response. Most of the applications of cellular materials comprise a compression loading. Thus, the study focuses on the influence of the anisotropy in the mechanical behavior of cellular material under cyclic compression loadings. For this study, a Digital Image Correlation (DIC) technique (named Correli) was applied, as well as SEM (Scanning Electron Microscopy) images were analyzed. The experimental results are discussed in detail for a closed-cell rigid poly (vinyl chloride) (PVC) foam, showing stress-strain curves in different directions and why the material can be assumed as transversely isotropic. Besides, the present paper shows elastic and plastic Poisson's ratios measured in different planes, explaining why the plastic Poisson's ratios approach to zero. Yield fronts created by the compression loadings in different directions and the influence of spring-back phenomenon on hardening curves are commented, also.
Resumo:
The cellular rheology has recently undergone a rapid development with particular attention to the cytoskeleton mechanical properties and its main components - actin filaments, intermediate filaments, microtubules and crosslinked proteins. However it is not clear what are the cellular structural changes that directly affect the cell mechanical properties. Thus, in this work, we aimed to quantify the structural rearrangement of these fibers that may emerge in changes in the cell mechanics. We created an image analysis platform to study smooth muscle cells from different arteries: aorta, mammary, renal, carotid and coronary and processed respectively 31, 29, 31, 30 and 35 cell image obtained by confocal microscopy. The platform was developed in Matlab (MathWorks) and it uses the Sobel operator to determine the actin fiber image orientation of the cell, labeled with phalloidin. The Sobel operator is used as a filter capable of calculating the pixel brightness gradient, point to point, in the image. The operator uses vertical and horizontal convolution kernels to calculate the magnitude and the angle of the pixel intensity gradient. The image analysis followed the sequence: (1) opens a given cells image set to be processed; (2) sets a fix threshold to eliminate noise, based on Otsu's method; (3) detect the fiber edges in the image using the Sobel operator; and (4) quantify the actin fiber orientation. Our first result is the probability distribution II(Δθ) to find a given fiber angle deviation (Δθ) from the main cell fiber orientation θ0. The II(Δθ) follows an exponential decay II(Δθ) = Aexp(-αΔθ) regarding to its θ0. We defined and determined a misalignment index α of the fibers of each artery kind: coronary αCo = (1.72 ‘+ or =’ 0.36)rad POT -1; renal αRe = (1.43 + or - 0.64)rad POT -1; aorta αAo = (1.42 + or - 0.43)rad POT -1; mammary αMa = (1.12 + or - 0.50)rad POT -1; and carotid αCa = (1.01 + or - 0.39)rad POT -1. The α of coronary and carotid are statistically different (p < 0.05) among all analyzed cells. We discussed our results correlating the misalignment index data with the experimental cell mechanical properties obtained by using Optical Magnetic Twisting Cytometry with the same group of cells.
Resumo:
This study addresses a vehicle routing problem with time windows, accessibility restrictions on customers, and a fleet that is heterogeneous with regard to capacity and average speed. A vehicle can performmultiple routes per day, all starting and ending at a single depot, and it is assigned to a single driverwhose totalwork hours are limited.Acolumn generation algorithmis proposed.The column generation pricing subproblem requires a specific elementary shortest path problem with resource constraints algorithm to address the possibility for each vehicle performingmultiple routes per day and to address the need to set the workday’s start time within the planning horizon. A constructive heuristic and a metaheuristic based on tabu search are also developed to find good solutions.
Resumo:
The ideal approach for the long term treatment of intestinal disorders, such as inflammatory bowel disease (IBD), is represented by a safe and well tolerated therapy able to reduce mucosal inflammation and maintain homeostasis of the intestinal microbiota. A combined therapy with antimicrobial agents, to reduce antigenic load, and immunomodulators, to ameliorate the dysregulated responses, followed by probiotic supplementation has been proposed. Because of the complementary mechanisms of action of antibiotics and probiotics, a combined therapeutic approach would give advantages in terms of enlargement of the antimicrobial spectrum, due to the barrier effect of probiotic bacteria, and limitation of some side effects of traditional chemiotherapy (i.e. indiscriminate decrease of aggressive and protective intestinal bacteria, altered absorption of nutrient elements, allergic and inflammatory reactions). Rifaximin (4-deoxy-4’-methylpyrido[1’,2’-1,2]imidazo[5,4-c]rifamycin SV) is a product of synthesis experiments designed to modify the parent compound, rifamycin, in order to achieve low gastrointestinal absorption while retaining good antibacterial activity. Both experimental and clinical pharmacology clearly show that this compound is a non systemic antibiotic with a broad spectrum of antibacterial action, covering Gram-positive and Gram-negative organisms, both aerobes and anaerobes. Being virtually non absorbed, its bioavailability within the gastrointestinal tract is rather high with intraluminal and faecal drug concentrations that largely exceed the MIC values observed in vitro against a wide range of pathogenic microorganisms. The gastrointestinal tract represents therefore the primary therapeutic target and gastrointestinal infections the main indication. The little value of rifaximin outside the enteric area minimizes both antimicrobial resistance and systemic adverse events. Fermented dairy products enriched with probiotic bacteria have developed into one of the most successful categories of functional foods. Probiotics are defined as “live microorganisms which, when administered in adequate amounts, confer a health benefit on the host” (FAO/WHO, 2002), and mainly include Lactobacillus and Bifidobacterium species. Probiotic bacteria exert a direct effect on the intestinal microbiota of the host and contribute to organoleptic, rheological and nutritional properties of food. Administration of pharmaceutical probiotic formula has been associated with therapeutic effects in treatment of diarrhoea, constipation, flatulence, enteropathogens colonization, gastroenteritis, hypercholesterolemia, IBD, such as ulcerative colitis (UC), Crohn’s disease, pouchitis and irritable bowel syndrome. Prerequisites for probiotics are to be effective and safe. The characteristics of an effective probiotic for gastrointestinal tract disorders are tolerance to upper gastrointestinal environment (resistance to digestion by enteric or pancreatic enzymes, gastric acid and bile), adhesion on intestinal surface to lengthen the retention time, ability to prevent the adherence, establishment and/or replication of pathogens, production of antimicrobial substances, degradation of toxic catabolites by bacterial detoxifying enzymatic activities, and modulation of the host immune responses. This study was carried out using a validated three-stage fermentative continuous system and it is aimed to investigate the effect of rifaximin on the colonic microbial flora of a healthy individual, in terms of bacterial composition and production of fermentative metabolic end products. Moreover, this is the first study that investigates in vitro the impact of the simultaneous administration of the antibiotic rifaximin and the probiotic B. lactis BI07 on the intestinal microbiota. Bacterial groups of interest were evaluated using culture-based methods and molecular culture-independent techniques (FISH, PCR-DGGE). Metabolic outputs in terms of SCFA profiles were determined by HPLC analysis. Collected data demonstrated that rifaximin as well as antibiotic and probiotic treatment did not change drastically the intestinal microflora, whereas bacteria belonging to Bifidobacterium and Lactobacillus significantly increase over the course of the treatment, suggesting a spontaneous upsurge of rifaximin resistance. These results are in agreement with a previous study, in which it has been demonstrated that rifaximin administration in patients with UC, affects the host with minor variations of the intestinal microflora, and that the microbiota is restored over a wash-out period. In particular, several Bifidobacterium rifaximin resistant mutants could be isolated during the antibiotic treatment, but they disappeared after the antibiotic suspension. Furthermore, bacteria belonging to Atopobium spp. and E. rectale/Clostridium cluster XIVa increased significantly after rifaximin and probiotic treatment. Atopobium genus and E. rectale/Clostridium cluster XIVa are saccharolytic, butyrate-producing bacteria, and for these characteristics they are widely considered health-promoting microorganisms. The absence of major variations in the intestinal microflora of a healthy individual and the significant increase in probiotic and health-promoting bacteria concentrations support the rationale of the administration of rifaximin as efficacious and non-dysbiosis promoting therapy and suggest the efficacy of an antibiotic/probiotic combined treatment in several gut pathologies, such as IBD. To assess the use of an antibiotic/probiotic combination for clinical management of intestinal disorders, genetic, proteomic and physiologic approaches were employed to elucidate molecular mechanisms determining rifaximin resistance in Bifidobacterium, and the expected interactions occurring in the gut between these bacteria and the drug. The ability of an antimicrobial agent to select resistance is a relevant factor that affects its usefulness and may diminish its useful life. Rifaximin resistance phenotype was easily acquired by all bifidobacteria analyzed [type strains of the most representative intestinal bifidobacterial species (B. infantis, B. breve, B. longum, B. adolescentis and B. bifidum) and three bifidobacteria included in a pharmaceutical probiotic preparation (B. lactis BI07, B. breve BBSF and B. longum BL04)] and persisted for more than 400 bacterial generations in the absence of selective pressure. Exclusion of any reversion phenomenon suggested two hypotheses: (i) stable and immobile genetic elements encode resistance; (ii) the drug moiety does not act as an inducer of the resistance phenotype, but enables selection of resistant mutants. Since point mutations in rpoB have been indicated as representing the principal factor determining rifampicin resistance in E. coli and M. tuberculosis, whether a similar mechanism also occurs in Bifidobacterium was verified. The analysis of a 129 bp rpoB core region of several wild-type and resistant bifidobacteria revealed five different types of miss-sense mutations in codons 513, 516, 522 and 529. Position 529 was a novel mutation site, not previously described, and position 522 appeared interesting for both the double point substitutions and the heterogeneous profile of nucleotide changes. The sequence heterogeneity of codon 522 in Bifidobacterium leads to hypothesize an indirect role of its encoded amino acid in the binding with the rifaximin moiety. These results demonstrated the chromosomal nature of rifaximin resistance in Bifidobacterium, minimizing risk factors for horizontal transmission of resistance elements between intestinal microbial species. Further proteomic and physiologic investigations were carried out using B. lactis BI07, component of a pharmaceutical probiotic preparation, as a model strain. The choice of this strain was determined based on the following elements: (i) B. lactis BI07 is able to survive and persist in the gut; (ii) a proteomic overview of this strain has been recently reported. The involvement of metabolic changes associated with rifaximin resistance was investigated by proteomic analysis performed with two-dimensional electrophoresis and mass spectrometry. Comparative proteomic mapping of BI07-wt and BI07-res revealed that most differences in protein expression patterns were genetically encoded rather than induced by antibiotic exposure. In particular, rifaximin resistance phenotype was characterized by increased expression levels of stress proteins. Overexpression of stress proteins was expected, as they represent a common non specific response by bacteria when stimulated by different shock conditions, including exposure to toxic agents like heavy metals, oxidants, acids, bile salts and antibiotics. Also, positive transcription regulators were found to be overexpressed in BI07-res, suggesting that bacteria could activate compensatory mechanisms to assist the transcription process in the presence of RNA polymerase inhibitors. Other differences in expression profiles were related to proteins involved in central metabolism; these modifications suggest metabolic disadvantages of resistant mutants in comparison with sensitive bifidobacteria in the gut environment, without selective pressure, explaining their disappearance from faeces of patients with UC after interruption of antibiotic treatment. The differences observed between BI07-wt e BI07-res proteomic patterns, as well as the high frequency of silent mutations reported for resistant mutants of Bifidobacterium could be the consequences of an increased mutation rate, mechanism which may lead to persistence of resistant bacteria in the population. However, the in vivo disappearance of resistant mutants in absence of selective pressure, allows excluding the upsurge of compensatory mutations without loss of resistance. Furthermore, the proteomic characterization of the resistant phenotype suggests that rifaximin resistance is associated with a reduced bacterial fitness in B. lactis BI07-res, supporting the hypothesis of a biological cost of antibiotic resistance in Bifidobacterium. The hypothesis of rifaximin inactivation by bacterial enzymatic activities was verified by using liquid chromatography coupled with tandem mass spectrometry. Neither chemical modifications nor degradation derivatives of the rifaximin moiety were detected. The exclusion of a biodegradation pattern for the drug was further supported by the quantitative recovery in BI07-res culture fractions of the total rifaximin amount (100 μg/ml) added to the culture medium. To confirm the main role of the mutation on the β chain of RNA polymerase in rifaximin resistance acquisition, transcription activity of crude enzymatic extracts of BI07-res cells was evaluated. Although the inhibition effects of rifaximin on in vitro transcription were definitely higher for BI07-wt than for BI07-res, a partial resistance of the mutated RNA polymerase at rifaximin concentrations > 10 μg/ml was supposed, on the basis of the calculated differences in inhibition percentages between BI07-wt and BI07-res. By considering the resistance of entire BI07-res cells to rifaximin concentrations > 100 μg/ml, supplementary resistance mechanisms may take place in vivo. A barrier for the rifaximin uptake in BI07-res cells was suggested in this study, on the basis of the major portion of the antibiotic found to be bound to the cellular pellet respect to the portion recovered in the cellular lysate. Related to this finding, a resistance mechanism involving changes of membrane permeability was supposed. A previous study supports this hypothesis, demonstrating the involvement of surface properties and permeability in natural resistance to rifampicin in mycobacteria, isolated from cases of human infection, which possessed a rifampicin-susceptible RNA polymerase. To understand the mechanism of membrane barrier, variations in percentage of saturated and unsaturated FAs and their methylation products in BI07-wt and BI07-res membranes were investigated. While saturated FAs confer rigidity to membrane and resistance to stress agents, such as antibiotics, a high level of lipid unsaturation is associated with high fluidity and susceptibility to stresses. Thus, the higher percentage of saturated FAs during the stationary phase of BI07-res could represent a defence mechanism of mutant cells to prevent the antibiotic uptake. Furthermore, the increase of CFAs such as dihydrosterculic acid during the stationary phase of BI07-res suggests that this CFA could be more suitable than its isomer lactobacillic acid to interact with and prevent the penetration of exogenous molecules including rifaximin. Finally, the impact of rifaximin on immune regulatory functions of the gut was evaluated. It has been suggested a potential anti-inflammatory effect of rifaximin, with reduced secretion of IFN-γ in a rodent model of colitis. Analogously, it has been reported a significant decrease in IL-8, MCP-1, MCP-3 e IL-10 levels in patients affected by pouchitis, treated with a combined therapy of rifaximin and ciprofloxacin. Since rifaximin enables in vivo and in vitro selection of Bifidobacterium resistant mutants with high frequency, the immunomodulation activities of rifaximin associated with a B. lactis resistant mutant were also taken into account. Data obtained from PBMC stimulation experiments suggest the following conclusions: (i) rifaximin does not exert any effect on production of IL-1β, IL-6 and IL-10, whereas it weakly stimulates production of TNF-α; (ii) B. lactis appears as a good inducer of IL-1β, IL-6 and TNF-α; (iii) combination of BI07-res and rifaximin exhibits a lower stimulation effect than BI07-res alone, especially for IL-6. These results confirm the potential anti-inflammatory effect of rifaximin, and are in agreement with several studies that report a transient pro-inflammatory response associated with probiotic administration. The understanding of the molecular factors determining rifaximin resistance in the genus Bifidobacterium assumes an applicative significance at pharmaceutical and medical level, as it represents the scientific basis to justify the simultaneous use of the antibiotic rifaximin and probiotic bifidobacteria in the clinical treatment of intestinal disorders.