989 resultados para Heparan-sulfate Proteoglycan
Resumo:
Carbon isotope ratio (CIR) analysis has been routinely and successfully used in sports drug testing for many years to uncover the misuse of endogenous steroids. One limitation of the method is the availability of steroid preparations exhibiting CIRs equal to endogenous steroids. To overcome this problem, hydrogen isotope ratios (HIR) of endogenous urinary steroids were investigated as a potential complement; results obtained from a reference population of 67 individuals are presented herein. An established sample preparation method was modified and improved to enable separate measurements of each analyte of interest where possible. From the fraction of glucuronidated steroids; pregnanediol, 16-androstenol, 11-ketoetiocholanolone, androsterone (A), etiocholanolone (E), dehydroepiandrosterone (D), 5α- and 5β-androstanediol, testosterone and epitestosterone were included. In addition, sulfate conjugates of A, E, D, epiandrosterone and 17α- and 17β-androstenediol were considered and analyzed after acidic solvolysis. The obtained results enabled the calculation of the first reference-population-based thresholds for HIR of urinary steroids that can readily be applied to routine doping control samples. Proof-of-concept was accomplished by investigating urine specimens collected after a single oral application of testosterone-undecanoate. The HIR of most testosterone metabolites were found to be significantly influenced by the exogenous steroid beyond the established threshold values. Additionally, one regular doping control sample with an extraordinary testosterone/epitestosterone ratio of 100 without suspicious CIR was subjected to the complementary methodology of HIR analysis. The HIR data eventually provided evidence for the exogenous origin of urinary testosterone metabolites. Despite further investigations on HIR being advisable to corroborate the presented reference-population-based thresholds, the developed method proved to be a new tool supporting modern sports drug testing procedures.
Resumo:
To study human T cell migration to human skin in vivo, we grafted severe combined immunodeficient mice with 500-microm thick human skin. Two weeks after grafting, epidermal and dermal structures in the grafts were of human origin. When we intraperitoneally injected grafted mice with clones of the human HUT-78 T cell line derived from a patient with cutaneous T cell lymphoma and Sézary syndrome, we detected in the grafts the rare Vbeta23-Jbeta1.2 T cell receptor transcripts characteristic for the HUT-78 clones. These signals were found 2-6 d after cell injection in about 40% of the grafted and HUT-78 cell injected mice but not in grafts from mice that received no exogenous T cells. In contrast to HUT-78 cells, which only accumulate in low number, grafts topically challenged with nickel sufate in vaseline from mice that were injected with autologous nickel-reactive T cell lines led to massive accumulation of T cells within 3 d. Only scattered T cells accumulated in the skin when grafted mice received vaseline plus T cells, nickel sulfate alone, T cells alone, or nickel sulfate plus an allogeneic nickel-nonreactive T cell clone. When the T cell lines were labeled with the fluorochrome PKH-26 before cell injection, spots of fluorescent label in the size and shape of cells were found in the grafts challenged with nickel. Together, these results clearly demonstrate that human T cells can migrate to human skin in this chimeric human/mouse model.
Resumo:
In order to investigate the efficiency of sulfate green rust (GR2) to remove Ni from solution, GR2 samples were synthesized under controlled laboratory conditions. Some GR2 samples were synthesized from Fe(II) and Fe(III) sulfate salts by precipitation. Other samples were prepared by coprecipitation, of Ni(II), Fe(II) and Fe(III) sulfate salts, i.e., in the presence of Ni. In another sample, Ni(II) sulfate salt was added to pre-formed GR2. After an initial X-ray diffraction (XRD) characterization all samples were exposed to ambient air in order to understand the role of Ni in the transformation of the GR2 samples. XRD was repeated after 45 days. The results showed that Nious GR2 prepared by coprecipitation is isomorphous to Ni-free GR2, i.e. Ni is incorporated into the crystalline structure. Fe(II) was not replaced by Ni(II) in the crystalline structure of GR2 formed prior to exposure to solution-phase Ni. This suggests Ni was adsorbed to the GR2 surface. Sulfate green rust is more efficient in removing Ni from the environment by coprecipitation.
Resumo:
RESUME La première étape primordiale au cycle de vie du Plasmodium dans un hôte mammifère est l'invasion des hepatocytes par des sporozoites. L'infection finale des hepatocytes est précédée de la traversée de plusieurs cellules hôtes, rompant les membranes plasmiques et ayant comme résultat la sécrétion des facteurs cytotoliques dans le micro-environnement. Ce matériel endogène libéré est fortement stimulant/immunogène et peut servir de signal de danger initiant des réponses distinctes dans diverses cellules. De nos jours, le caractère essentiel et salutaire de la migration des sporozoites comme étape d'infection du Plasmodium est vivement controversée. Ainsi, notre étude a visé à caractériser l'effet de l'interaction du parasite avec ses cellules hôtes d'un point de vue immunologique. En particulier, nous avons voulu évaluer l'effet de la perte de matériel cellulaire pendant l'infection de Plasmodium sur les hepatocytes primaires de souris et sur des cultures cellulaires HepG2. Nous avons observé que les facteurs cytotoxiques dérivés des cellules endommagés activent NF-κB - un important régulateur de réponse inflammatoires -dans des cellules voisines des cellules endommagés, qui sont des cellules hôtes potentielles pour l'infection finale du parasite. Cette activation de NF-κB s'est produite peu de temps après l'infection et a mené in vitro et in vivo à une réduction d'infection de façon dépendante du temps, un effet qui a pu être compensé par l'addition de BAY11-7082, un inhibiteur spécifique de NF-κB. De plus, aucune activation de NF-κB avec des parasites SPECT-/-, incapables de traverser les hepatocytes, n'a été observée. Nous avons montré parla suite que l'activation de NF-κB induit l'expression de l'enzyme iNOS dans les hepatocytes, qui est responsable d'une diminution des hepatocytes infectés. En outre, les hepatocytes primaires des souris MyD88-/- n'ont montré ni activation de NF-κB, ni expression d'iNOS lors de l'infection, ce qui suggère la participation des membres de famille du Toll/IL-1 récepteur dans la reconnaissance des facteurs cytosoxiques. En effet, le manque de MyD88 a augmenté significativement l'infection in vitro et in vivo. D'autre part, un rôle bénéfique pour l'activation de NF-κB a été évalué. Les cellules infectées étaient plus résistantes contre l'apoptose induite par Fas (CD95/Apo-1) que les cellules non infectées ou les cellules infectées dans lesquelles NF-κB a été bloqué par BAY11-7082 in vitro. Paradoxalement, l'expression d'iNOS contribue à la protection des cellules infectées contre l'apoptose pax Fas, puisque le traitement avec l'inhibiteur spécifique SMT (S-methylisothiourea) a rendu les cellules infectées plus susceptibles à l'apoptose. Un effet bénéfique additionnel pour le parasite est que la plupart des cellules hôtes traversées présentent des peptides du parasite aux cellules T cytotoxiques spécifiques et peuvent donc réorienter la réaction immune spécifique sur les cellules non infectées. Nous montrons que les cellules hôtes endommagés par la migration du parasite induit l'inflammation, qui limite l'ampleur de l'infection. D'autre part, nos données soutiennent que la survie du parasite Plasmodium dans le foie est assurée par une augmentation de la résistance des hepatocytes contre l'apoptose. SUMMARY The first obligatory step of the Plasmodium life cycle in the mammalian host is the invasion of hepatocytes by sporozoites. Final hepatocyte infection involves the penetration of several host cells, whose plasma membranes are ruptured in the process, resulting in the release of cytosolic factors into the microenvironment. This released endogenous material is highly stimulatory / immunogenic and can serve as a danger signal initiating distinct responses in various cells. To date, it is highly controversial whether sporozoite migration through hepatocytes is an essential and beneficial step for Plasmodium infection. Thus, our study aimed at characterizing the effect of the interaction of the parasite with its host cells from an immunological point of view In particular, we wanted to evaluate the effect of cell material leakage during Plasmodium infection on cultured mouse primary hepatocytes and HepG2 cells. We observed that wounded cell-derived cytosolic factors activate NF-κB - a main regulator of host inflammatory responses - in cells bordering wounded cells, which are potential host cells for final parasite infection. This activation of NF-κB occurred shortly after infection and led to a reduction of infection load in a time dependent manner in vitro and in viva, an effect that could be reverted by addition of the specific NF-κB inhibitor BAY11-7082. In addition, no NF-κB activation was observed when SPECT-/- parasites, which are devoid of hepatocyte traversing properties, were used. We provide further evidence that NF-κB activation causes the induction of inducible nitric oxide synthase (iNOS) expression in hepatocytes, and this is, in turn, responsible for a decrease in Plasmodium-infected hepatocytes. Furthermore, primary hepatocytes from MyD88-/- mice showed no NF-κB activation and iNOS expression upon infection, suggesting a role of the Toll/IL-1 receptor family members in sensing cytosolic factors. Indeed, lack of MyD88 significantly increased infection in vitro and in vivo. In a further complementary series of experiments, we assessed a possible beneficial role for the activation of NF-κB. Infected cells were more resistant to Fas (CD95/Apo-1)-mediated apoptosis than uninfected cells or infected cells in which NF-κB was blocked by BAYl1-7082 in vitro. Paradoxically, iNOS expression contributes to the protection of infected cells from Fas-induced apoptosis, since treatment with the specific iNOS inhibitor SMT (S-Methylisothiourea Sulfate) rendered the infected cells more susceptible to apoptosis. An additional beneficial effect of host cell traversal for the parasite is the fact that mainly traversed cells present parasite-derived peptides to specific cytotoxic T cells and therefore may redirect the specific immune response to uninfected cells. In summary, we have shown that host cells wounded by parasite migration induce inflammation, which limits the extent of parasite infection. In addition, our data support the notion that survival of Plasmodium parasites in the liver is mediated by increasing the resistance of hepatocytes to Fas-induced apoptosis.
Resumo:
The widespread use of combination antiretroviral therapy (ARVs) has considerably improved the prognosis of patients infected with HIV. Conversely, considerable advances have been recently realized for the therapy of hepatitis C infection with the recent advent of potent new anti-HCV drugs that allow an increasing rate HCV infection cure. Despite their overall efficacy, a significant number of patients do not achieve or maintain adequate clinical response, defined as an undetectable viral load for HIV, and a sustained virological response (or cure) in HCV infection. Treatment failure therefore still remains an important issue besides drugs toxicities and viral resistance which is not uncommon in a significant percentage of patients who do not reach adequate virological suppression. The reasons of variability in drug response are multifactorial and apart from viral genetics, other factors such as environmental factors, drug- drug interactions, and imperfect compliance may have profound impact on antiviral drugs' clinical response. The possibility of measuring plasma concentration of antiviral drugs enables to guide antiviral drug therapy and ensure optimal drug exposure. The overall objective of this research was to widen up the current knowledge on pharmacokinetic and pharmacogenetic factors that influence the clinical response and toxicity of current and newly approved antiretroviral and anti-HCV drugs. To that endeavour, analytical methods using liquid chromatography coupled with tandem mass spectrometry have been developed and validated for the precise and accurate measurement of new antiretroviral and anti-HCV drugs . These assays have been applied for the TDM of ARVs and anti-HCV in patients infected with either HIV or HCV respectively, and co-infected with HIV- HCV. A pharmacokinetic population model was developed to characterize inter and intra-patient variability of rilpivirine, the latest marketed Non Nucleoside Reverse transcriptase (NNRTI) Inhibitor of HIVand to identify genetic and non genetic covariates influencing rilpivirine exposure. None of the factors investigated so far showed however any influence of RPV clearance. Importantly, we have found that the standard daily dosage regimen (25 mg QD) proposed for rilpivirine results in concentrations below the proposed therapeutic target in about 40% of patients. In these conditions, virologie escape is a potential risk that remains to be further investigated, notably via the TDM approach that can be a useful tool to identify patients who are at risk for being exposed to less than optimal levels of rilpivirine in plasma. Besides the last generation NNRTI rilpivirine, we have studied efavirenz, the major NNRTI clinically used so far. Namely for efavirenz, we aimed at identifying a potential new marker of toxicity that may be incriminated for the neuropsychological sides effects and hence discontinuation of efavirenz therapy. To that endeavour, a comprehensive analysis of phase I and phase II metabolites profiles has been performed in plasma, CSF and in urine from patients under efavirenz therapy. We have found that phase II metabolites of EFV constitute the major species circulating in blood, sometimes exceeding the levels of the parent drug efavirenz. Moreover we have identified a new metabolite of efavirenz in humans, namely the 8-OH-EFV- sulfate which is present at high concentrations in all body compartments from patients under efavirenz therapy. These investigations may open the way to possible alternate phenotypic markers of efavirenz toxicity. Finally, the specific influence of P-glycoprotein on the cellular disposition of a series ARVs (NNRTIs and Pis] has been studies in in vitro cell systems using the siRNA silencing approach. -- Depuis l'introduction de la thérapie antirétrovirale (ARVs) la morbidité et la mortalité liées au VIH ont considérablement diminué. En parallèle le traitement contre le virus de l'hépatite C (VHC) a connu récemment d'énormes progrès avec l'arrivée de nouveaux médicaments puissants, ce qui a permis une augmentation considérable de la guérison de l'infection par le VHC. En dépit de l'efficacité de ces traitements antiviraux, les échecs thérapeutiques ainsi que les effets secondaires des traitements restent un problème important. Une réponse imparfaite ou la toxicité du traitement est certainement multifactorielle. Le suivi thérapeutique des médicaments [Therapeutic Drug Monitoring TDM) à travers la mesure des concentrations plasmatiques constitue une approche importante pour guider le traitement médicamenteux et de s'assurer que les patients sont exposés à des concentrations optimales des médicaments dans le sang, et puissent tirer tout le bénéfice potentiel du traitement. L'objectif global de cette thèse était d'étudier les facteurs pharmacocinétiques et pharmacogénétiques qui influencent l'exposition des médicaments antiviraux (ARVs et anti- VHC) récemment approuvés. A cet effet, des méthodes de quantification des concentrations plasmatiques des médicaments antirétroviraux, anti-VHC ainsi que pour certains métabolites ont été développées et validées en utilisant la Chromatographie liquide couplée à la spectrométrie de masse tandem. Ces méthodes ont été utilisées pour le TDM des ARVs et pour les agents anti-VHC chez les patients infectés par le VIH, et le VHC, respectivement, mais aussi chez les patients co-infectés par le VIH-VHC. Un modèle de pharmacocinétique de population a été développé pour caractériser la variabilité inter-et intra-patient du médicament rilpivirine, un inhibiteur non nucléosidique de la transcriptase de VIH et d'identifier les variables génétiques et non génétiques influençant l'exposition au médicament. Aucun des facteurs étudiés n'a montré d'influence notable sur la clairance de la rilpivirine. Toutefois, la concentration résiduelle extrapolée selon le modèle de pharmacocinétique de population qui a été développé, a montré qu'une grande proportion des patients présente des concentrations minimales inférieures à la cible thérapeutique proposée. Dans ce contexte, la relation entre les concentrations minimales et l'échappement virologique nécessite une surveillance étroite des taux sanguins des patients recevant de la rilpivirine. A cet effet, le suivi thérapeutique est un outil important pour l'identification des patients à risque soient sous-exposés à lai rilpivirine. Pour identifier de nouveaux marqueurs de la toxicité qui pourraient induire l'arrêt du traitement, le profil des métabolites de phase I et de phase II a été étudié dans différentes matrices [plasma, LCR et urine) provenant de patients recevant de l'efavirenz. Les métabolites de phase II, qui n'avaient à ce jour jamais été investigués, constituent les principales espèces présentes dans les matrices étudiées. Au cours de ces investigations, un nouveau métabolite 8- OH-EFV-sulfate a été identifié chez l'homme, et ce dernier est. présent à des concentrations importantes. L'influence de certains facteurs pharmacogénétique des patients sur le profil des métabolites a été étudiée et ouvre la voie à de possibles nouveaux marqueurs phénotypiques alternatifs qui pourraient possiblement mieux prédire la toxicité associée au traitement par l'efavirenz. Finalement, nous nous sommes intéressés à étudier dans un modèle in vitro certains facteurs, comme la P-glycoprotéine, qui influencent la disposition cellulaire de certains médicaments antirétroviraux, en utilisant l'approche par la technologie du siRNA permettant de bloquer sélectivement l'expression du gène de cette protéine d'efflux des médicaments. -- Depuis l'introduction de la thérapie antiretrovirale (ARVs] la morbidité et la mortalité liées au VIH ont considérablement diminué. En parallèle le traitement contre le virus de l'hépatite C (VHC) a connu récemment d'énormes progrès avec l'arrivée de nouveaux médicaments puissants, ce qui a permis une augmentation considérable de la guérison de l'infection par le VHC. En dépit de l'efficacité de ces traitements antiviraux, les échecs thérapeutiques ainsi que les effets secondaires des traitements restent un problème important. Il a pu être démontré que la concentration de médicament présente dans l'organisme est corrélée avec l'efficacité clinique pour la plupart des médicaments agissant contre le VIH et contre le VHC. Les médicaments antiviraux sont généralement donnés à une posologie fixe et standardisée, à tous les patients, il existe cependant une importante variabilité entre les concentrations sanguines mesurées chez les individus. Cette variabilité peut être expliquée par plusieurs facteurs démographiques, environnementaux ou génétiques. Dans ce contexte, le suivi des concentrations sanguines (ou Therapeutic Drug Monitoring, TDM) permet de contrôler que les patients soient exposés à des concentrations suffisantes (pour bloquer la réplication du virus dans l'organisme) et éviter des concentrations excessives, ce qui peut entraîner l'apparition d'intolérence au traitement. Le but de ce travail de thèse est d'améliorer la compréhension des facteurs pharmacologiques et génétiques qui peuvent influencer l'efficacité et/ou la toxicité des médicaments antiviraux, dans le but d'améliorer le suivi des patients. A cet effet, des méthodes de dosage très sensibles et ont été mises au point pour permettre de quantifier les médicaments antiviraux dans le sang et dans d'autres liquides biologiques. Ces méthodes de dosage sont maintenant utilisées d'une part dans le cadre de la prise en charge des patients en routine et d'autre part pour diverses études cliniques chez les patients infectés soit par le HIV, le HCV ou bien coinfectés par les deux virus. Une partie de ce travail a été consacrée à l'investigation des différents facteurs démographiques, génétiques et environnementaux qui pourraient l'influencer la réponse clinique à la rilpivirine, un nouveau médicament contre le VIH. Toutefois, parmi tous les facteurs étudiés à ce jour, aucun n'a permis d'expliquer la variabilité de l'exposition à la rilpivirine chez les patients. On a pu cependant observer qu'à la posologie standard recommandée, un pourcentage relativement élevé de patients pourrait présenter des concentrations inférieures à la concentration sanguine minimale actuellement proposée. Il est donc utile de surveiller étroitement les concentrations de rilpivirine chez les patients pour identifier sans délai ceux qui risquent d'être sous-exposés. Dans l'organisme, le médicament subit diverses transformations (métabolisme) par des enzymes, notamment dans le foie, il est transporté dans les cellules et tissus par des protéines qui modulent sa concentration au site de son action pharmacologique. A cet effet, différents composés (métabolites) produits dans l'organisme après l'administration d'efavirenz, un autre médicament anti-VIH, ont été étudiés. En conclusion, nous nous sommes intéressés à la fois aux facteurs pharmacologiques et génétiques des traitements antiviraux, une approche qui s'inscrit dans l'optique d'une stratégie globale de prise en charge du patient. Dans ce contexte, le suivi des concentrations sanguines de médicaments constitue une des facettes du domaine émergent de la Médecine Personnalisée qui vise à maximiser le bénéfice thérapeutique et le profil de tolérance des médicaments antiviraux
Resumo:
Knowledge about the fate of fertilizer nitrogen in agricultural systems is essential for the improvement of management practices in order to maximize nitrogen (N) recovery by the crop and reduce N losses from the system to a minimum. This study involves fertilizer management practices using the 15N isotope label applied in a single rate to determine the fertilizer-N balance in a particular soil-coffee-atmosphere system and to deepen the understanding of N plant dynamics. Five replicates consisting of plots of about 120 plants each were randomly defined within a 0.2 ha coffee plantation planted in 2001, in Piracicaba, SP, Brazil. Nine plants of each plot were separated in sub-plots for the 15N balance studies and treated with N rates of 280 and 350 kg ha-1 during 2003/2004 and 2004/2005, respectively, both of them as ammonium sulfate enriched to a 15N abundance of 2.072 atom %. Plant shoots were considered as separate parts: the orthotropic central branch, productive branches, leaves of productive branches, vegetative branches, leaves of vegetative branches and fruit. Litter, consisting of dead leaves accumulated below the plant canopy, was measured by the difference between leaves at harvest and at the beginning of the following flowering. Roots and soil were sampled down to a depth of 1.0 at intervals of 0.2 m. Samples from the isotopic sub-plots were used to evaluate total N and 15N, and plants outside sub-plots were used to evaluate dry matter. Volatilization losses of NH3 were estimated using special collectors. Leaching of fertilizer-N was estimated from deep drainage water fluxes and 15N concentrations of the soil solution at 1 m soil depth. At the end of the 2-year evaluation, the recovery of 15N applied as ammonium sulfate was 19.1 % in aerial plant parts, 9.4 % in the roots, 23.8 % in the litter, 26.3 % in the fruit and 12.6 % remaining in the 0_1.0 m soil profile. Annual leaching and volatilization losses were very small (2.0 % and 0.9 %, respectively). After two years, only 6.2 % N were missing in the balance (100 %) which can be attributed to other non-estimated compartments and experimental errors. Results show that an enrichment of only 2 % atom 15N allows the study of the partition of fertilizer-N in a perennial crop such as coffee during a period of two years.
Resumo:
The modulation of HLA-DR and HLA-A, -B, and -C by human recombinant immune interferon (IFN-gamma) was studied on 10 malignant glioma cell lines established in our laboratory, on 8 clones or subclones derived from these lines, and on a fetal astrocyte cell line. Comparative studies were performed with recombinant leukocyte interferon (IFN-alpha). The results not only confirmed the selective activity of IFN-gamma on the modulation of HLA-DR expression, as opposed to that of IFN-alpha, but also demonstrated a marked heterogeneity in the response of glioma cell lines and their clones to the two types of IFN tested. For example, all 3 clones of an inducible cell line could be modulated to express HLA-DR, whereas only 2 of 5 clones derived from a noninducible line were modulated. This heterogeneity did not seem to be due to the absence of the receptor for IFN-gamma on the surface of these cells, since almost all of the cell lines or clones tested (17 of 19) responded to IFN-gamma by the induction or enhancement of the expression for either HLA-DR or HLA-A, -B, and -C (or both). The heterogeneity of induction was also demonstrated between clones derived from a glioma line that did not express HLA-DR after IFN-gamma treatment. The production of HLA-DR by one of the clones was abundant enough to be confirmed by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis.
Resumo:
Ni(II)-Fe(II)-Fe(III) layered double hydroxides (LDH) or Ni-containing sulfate green rust (GR2) samples were prepared from Ni(II), Fe(II) and Fe(III) sulfate salts and analyzed with X ray diffraction. Nickel is readily incorporated in the GR2 structure and forms a solid solution between GR2 and a Ni(II)-Fe(III) LDH. There is a correlation between the unit cell a-value and the fraction of Ni(II) incorporated into the Ni(II)-GR2 structure. Since there is strong evidence that the divalent/trivalent cation ratio in GR2 is fixed at 2, it is possible in principle to determine the extent of divalent cation substitution for Fe(II) in GR2 from the unit cell a-value. Oxidation forms a mixture of minerals but the LDH structure is retained if at least 20 % of the divalent cations in the initial solution are Ni(II). It appears that Ni(II) is incorporated in a stable LDH structure. This may be important for two reasons, first for understanding the formation of LDHs, which are anion exchangers, in the natural environment. Secondly, this is important for understanding the fate of transition metals in the environment, particularly in the presence of reduced Fe compounds.
Resumo:
The aim of this study was to identify genes involved in solute and matric stress mitigation in the polycyclic aromatic hydrocarbon (PAH)-degrading Novosphingobium sp. strain LH128. The genes were identified using plasposon mutagenesis and by selection of mutants that showed impaired growth in a medium containing 450 mM NaCl as a solute stress or 10% (wt/vol) polyethylene glycol (PEG) 6000 as a matric stress. Eleven and 14 mutants showed growth impairment when exposed to solute and matric stresses, respectively. The disrupted sequences were mapped on a draft genome sequence of strain LH128, and the corresponding gene functions were predicted. None of them were shared between solute and matric stress-impacted mutants. One NaCl-affected mutant (i.e., NA7E1) with a disruption in a gene encoding a putative outer membrane protein (OpsA) was susceptible to lower NaCl concentrations than the other mutants. The growth of NA7E1 was impacted by other ions and nonionic solutes and by sodium dodecyl sulfate (SDS), suggesting that opsA is involved in osmotic stress mitigation and/or outer membrane stability in strain LH128. NA7E1 was also the only mutant that showed reduced growth and less-efficient phenanthrene degradation in soil compared to the wild type. Moreover, the survival of NA7E1 in soil decreased significantly when the moisture content was decreased but was unaffected when soluble solutes from sandy soil were removed by washing. opsA appears to be important for the survival of strain LH128 in soil, especially in the case of reduced moisture content, probably by mitigating the effects of solute stress and retaining membrane stability.
Resumo:
Ammonia (NH3) volatilization can reduce the efficiency of urea applied to the surface of no-till (NT) soils. Thus, the objectives of this study were to evaluate the magnitude of NH3 losses from surface-applied urea and to determine if this loss justifies the urea incorporation in soil or its substitution for other N sources under the subtropical climatic conditions of South-Central region of Paraná State, Brazil. The experiment, performed over four harvesting seasons in a clayey Hapludox followed a randomized block design with four replicates. A single dose of N (150 kg ha-1) to V5 growth stage of corn cultivated under NT system was applied and seven treatments were evaluated, including surface-applied urea, ammonium sulfate, ammonium nitrate, urea with urease inhibitor, controlled-release N source, a liquid N source, incorporated urea, and a control treatment with no N application. Ammonia volatilization was evaluated for 20 days after N application using a semi-open static system. The average cumulative NH3 loss due to the superficial application of urea was low (12.5 % of the applied N) compared to the losses observed in warmer regions of Southeastern Brazil (greater than 50 %). The greatest NH3 losses were observed in dry years (up to 25.4 % of the applied N), and losses decreased exponentially as the amount of rainfall after N application increased. Incorporated urea and alternative N sources, with the exception of controlled-release N source, decreased NH3 volatilization in comparison with surface-applied urea. Urea incorporation is advantageous for the reduction of NH3 volatilization; however, other aspects as its low operating efficiency should be considered before this practice is adopted. In the South-Central region of Paraná, the low NH3 losses from the surface-applied urea in NT system due to wet springs and mild temperatures do not justify its replacement for other N sources.
Resumo:
Pasture is the main form of land use in Amazonia. Over time the pasture grass loses vigor and yields decrease, indicating a certain degree of degeneration. The main causes of degradation are lack of pasture maintenance and subsequent weed infestation, the choice of regionally unsuitable forage species and excessive grazing. The main purpose of this study was to evaluate the impact of different recovery managements on soil chemical properties and grass yield of a degraded pasture in Rondônia. For this purpose, an experiment was installed in October 2001, consisting of five treatments: C = control; HA = harrowing + NPK + micronutrients; HE = Herbicide + NK + micronutrients; R = No-tillage rice + NPK + micronutrients; and S = No-tillage soybean + PK + micronutrients. The following N, P and K sources were used: ammonium sulfate for N, calcined phosphate for P and potassium chloride for K. The experiment was arranged in a randomized block design with four replications. The shoot dry matter yield of the grass was analyzed as of the 35th month of experimentation, in a dry and a rainy period. Phosphorus fertilization resulted in significant increases in Ca2+ and Mg2+ and increasing trend of P in the topsoil in the initial months of the experiment in treatments HA and S and increases in Ca2+ and P (trend) in the treatment R. The cumulative production of Brachiaria brizantha, from Sep/2004 to Mar/2005, was 30,025, 28,267 and 27,735 kg ha-1 shoot dry matter in the treatments HA, R and S, respectively. These values differed significantly from treatments C and HE, with 17,040 and 17,057 kg ha-1, respectively. It was concluded that phosphorus fertilization associated to pasture reform was effective to raise the dry matter yield of Brachiaria brizantha. Rice or soybean under no-tillage is recommended as a practice of pasture recovery, due to the residual effect of fertilization.
Resumo:
Cyst-based ecotoxicological tests are simple and low-cost methods for assessing acute toxicity. Nevertheless, only a few comparative studies on their sensitivity are known. In the present study, the suitability of the use of two freshwater Anostracan species, Streptocephalus rubricaudatus and S. texanus, was assessed. The impact of 16 priority pollutants (4 heavy metals, 11 organic, and 1 organometallic compounds) on these two species, as well as on Artemia salina (Artoxkit M), Daphnia magna (International Organization for Standardization 6341), and S. proboscideus (Streptoxkit F) was assessed. For indicative comparison, bioassays using Brachionus calyciflorus (Rotoxkit F) and Photobacterium phosphoreum (Microtox) were also performed. For heavy metals (K2Cr2O7, Cd2+, Zn2+, Cu2+), the sensitivity of the two studied Streptocephalus species was slightly higher than that of D. magna. It was significantly more elevated than for the marine A. salina. For organic and organometallic micropollutants [phenol, 3,5-dichlorophenol, pentachlorophenol (PCP), hydroquinone, linear alkylbenzene sulfonate, sodium dodecyl sulfate, tributylphosphate, dimethylphthalate, atrazine, lindane, malathion, tributyltin chloride (TBT-Cl)], the sensitivity of the 4 anostracan species was of the same order of magnitude as that of D. magna. Artemia salina was slightly less sensitive to some organic compounds (PCP, hydroquinone, TBT-Cl). The sensitivity of S. rubricaudatus to organic solvents was low. On the other hand, this anostracan was quite sensitive to NaCl. Thus, its use is restricted to freshwater samples. The evaluation of global practicability of these two tests confirms that cyst-based freshwater anostracans may be used to perform low-cost tests at a sensitivity comparable to that of D. magna (24 h immobilization test).
Resumo:
The sandstone-hosted Beverley uranium deposit is located in terrestrial sediments in the Lake Frome basin in the North Flinders Ranges, South Australia. The deposit is 13 km from the U-rich Mesoproterozoic basement of the Mount Painter inlier, which is being uplifted 100 to 200 m above the basin by neotectonic activity that probably initiated in the early Pliocene. The mineralization was deposited mainly in organic matter-poor Miocene lacustrine sands and partly in the underlying reductive strata comprising organic matter-rich clays and silts. The bulk of the mineralization consists of coffinite and/or uraninite nodules, growing around Co-rich pyrite with an S isotope composition (delta S-34 = 1.0 +/- 0.3 parts per thousand), suggestive of an early diagenetic lacustrine origin. In contrast, authigenic sulfides in the bulk of the sediments have a negative S isotope signature (delta S-34 ranges from -26.2 to -35.5 parts per thousand), indicative of an origin via bacterially mediated sulfate reduction. Minor amounts of Zn-bearing native copper and native lead also support the presence of specific, reducing microenvironments in the ore zone. Small amounts of carnotite are associated with the coffinite ore and also occur beneath a paleosoil horizon overlying the uranium deposit. Provenance studies suggest that the host Miocene sediments were derived from the reworking of Early Cretaceous glacial or glaciolacustrine sediments ultimately derived from Paleozoic terranes in eastern Australia. In contrast, the overlying Pliocene strata were in part derived from the Mesoproterozoic basement inlier. Mass-balance and geochemical data confirm that granites of the Mount Painter domain were the ultimate source of U and BEE at Beverley. U-Pb dating of coffinite and carnotite suggest that the U mineralization is Pliocene (6.7-3.4 Ma). The suitability of the Beverley deposit for efficient mining via in situ leaching, and hence its economic value, are determined by the nature of the hosting sand unit, which provides the permeability and low reactivity required for high fluid flow and low chemical consumption. These favorable sedimentologic and geometrical features result from a complex conjunction of factors, including deposition in lacustrine shore environment, reworking of angular sands of glacial origin, deep Pliocene weathering, and proximity to an active fault exposing extremely U rich rocks.
Resumo:
Synthetic root exudates were formulated based on the organic acid composition of root exudates derived from the rhizosphere of aseptically grown corn plants, pH of the rhizosphere, and the background chemical matrices of the soil solutions. The synthetic root exudates, which mimic the chemical conditions of the rhizosphere environment where soil-borne metals are dissolved and absorbed by plants, were used to extract metals from sewage-sludge treated soils 16 successive times. The concentrations of Zn, Cd, Ni, Cr, and Cu of the sludge-treated soil were 71.74, 0.21, 15.90, 58.12, and 37.44 mg kg-1, respectively. The composition of synthetic root exudates consisted of acetic, butyric, glutaric, lactic, maleic, propionic, pyruvic, succinic, tartaric, and valeric acids. The organic acid mixtures had concentrations of 0.05 and 0.1 mol L-1 -COOH. The trace elements removed by successive extractions may be considered representative for the availability of these metals to plants in these soils. The chemical speciation of the metals in the liquid phase was calculated; results showed that metals in sludge-treated soils were dissolved and formed soluble complexes with the different organic acid-based root exudates. The most reactive organic acid ligands were lactate, maleate, tartarate, and acetate. The inorganic ligands of chloride and sulfate played insignificant roles in metal dissolution. Except for Cd, free ions did not represent an important chemical species of the metals in the soil rhizosphere. As different metals formed soluble complexes with different ligands in the rhizosphere, no extractor, based on a single reagent would be able to recover all of the potentially plant-available metals from soils; the root exudate-derived organic acid mixtures tested in this study may be better suited to recover potentially plant-available metals from soils than the conventional extractors.
Resumo:
Gypsum does not affect the soil negative charges and maintains sulfate in the soil solution, making it one of the cheapest products to increase Ca activity in soil solution, especially in the deeper soil layers. Higher Ca levels in the soil solution can increase the uptake of this nutrient by apple trees, reducing the risk of physiological disorders caused by Ca deficiency. This study assessed the effect of long-term gypsum application on some soil properties and on the chemical composition of leaves and fruits of an apple cultivar susceptible to fruit disorders associated with low Ca. The experiment was conducted in São Joaquim, in the South of Brazil, from 2001 to 2009. Gypsum rates of 0, 1.0, 2.0 and 3.0 t ha-1 were annually broadcast over the soil surface, without incorporation, in an apple orchard with cultivar ´Catarina´, planted in 1997. Gypsum application over eight consecutive years had no effect on soil exchangeable K and Al to a depth of 80 cm, but increased exchangeable Ca in the sampled layers (0-10, 10-20, 40-60 and 60-80 cm), while exchangeable Mg decreased only in the surface layer (0-20 cm). Gypsum did not affect the concentration of any nutrient in the fruits, including Ca. The same was verified in the leaves, except for Mg which decreased with increased gypsum rate. Despite increasing the availability of Ca in the soil profile to a depth of 80 cm, gypsum was not effective to increase the Ca content in leaves and fruits of an apple cultivar susceptible to Ca deficiency grown in an appropriately limed soil.