956 resultados para Hazardous materials response


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Road traffic injuries are a major global public health problem but continue to receive inadequate attention. Alcohol influences both risk and consequence of road traffic injury but the scale of the problem is not well understood in many countries. In Vietnam, economic development has brought a substantial increase in the number of registered motorcycles as well as alcohol consumption. Traffic injury is among the leading causes of death in Vietnam but there is little local information regarding alcohol related traffic injuries. The primary goal of this study is to explore the drinking and driving patterns of males and their perceptions towards drink-driving and to determine the relationship between alcohol consumption and road traffic injuries. Furthermore, this thesis aims to present the situation analysis for choosing priority actions to reduce drinking and driving in Vietnam. The study is a combination of two cross-sectional surveys and a pilot study. The pilot study, involving 224 traffic injured patients, was conducted to test the tools and the feasibility of approach methods. In the first survey, male patrons (n=464) were randomly selected at seven restaurants. Face-to-face interviews were conducted when patrons just arrived and breath tests were collected when they were about to leave the restaurant. In the second survey, male patients admitted to hospital following a traffic injury (n=480, of which 414 were motorcycle or bicycle riders) were interviewed and their blood alcohol concentration (BAC) measured by breathalyzer. The results show broadly similar patterns of drinking and driving among male patrons and male traffic injured patients with a high frequency of drinking and drink-driving reported among the majority of the two groups. A high proportion of male patrons were leaving restaurants with a BAC over the legal limit. Factors that significantly associate with the number of drinks and BAC were age, hazardous drinking, frequency of drink-driving in the past year, self-estimated number of drinks consumed to drive legally, perceived family’s disapproval of drink-driving, and perceived legal risk and physical risk. The proportion of patrons and patients with BAC above the legal limit of 0.05 were 86.7% and 60.4% respectively, which was much higher than found in previous studies. In addition, both groups had a high prevalence of BAC over 0.15g/100ml (39.7% of patrons and 45.6% patients), a level that can seriously affect driving capacity. Results from the case-crossover analysis for patients indicate a dose-response relationship between alcohol consumption and the risk of traffic injury. The risk of traffic injury increased when alcohol was consumed before driving and there was a more than 13 fold increase when six or more drinks were consumed. Regarding perceptions towards drinking and driving, findings corroborate the low awareness among males in Vietnam, with a majority of respondents holding a low knowledge of safe and legally permissible alcohol use, and a low perceived risk of drinking and driving. The results also indicate a huge gap in prevention skills in terms of planning ahead or using alternative transport to avoid drink-driving and a perception by patrons and patients of a low rate of disapproval of drink-driving from peers and family. Findings in this study have considerable implications for national policy, injury prevention, clinical practice, reporting systems, and for further research. The low rate of compliance with existing laws and a generally low perceived legal risk toward drink-driving in this study call for the strengthening of enforcement along with mass media campaigns and news coverage in order to decrease the widespread perception of impunity and thereby, to reduce the level of drink-driving. In addition, no significant difference was found in this study on risk of traffic injuries between car drivers and motorcycle drivers. The current inconsistency between legal BAC for drivers of motorcycles, compared to cars, thus needs addressing. Furthermore, as drinking was found to be very common, rather than solely targeting drink-driving, it is important to call for a more strategic and comprehensive approach to alcohol policy in Viet Nam. This study also has considerable implications for clinical practice in terms of screening and brief interventions. Our study suggests that the short form of the AUDIT (AUDIT-C) screening tool is appropriate for use in busy emergency departments. The high proportion of traffic injured patients with evidence of alcohol abuse or hazardous drinking suggests that brief interventions by alcohol and drug counselors in emergency departments are a sensible option to addressing this important problem. The significance of this study is in the combination of the systematic collection of breath test and use of case-crossover design to estimate the risk of traffic injuries after alcohol consumption. The results provide convincing evidence to policy makers, health authorities and the media to help raise community awareness and policy advocacy toward the drinkdriving problem in Vietnam. The findings suggest an urgent need for a multi-sectoral approach to curtail drink-driving in Vietnam, especially programs to raise community awareness and effective legal enforcement. Furthermore, serving as a situation analysis, the thesis should inform the formulation of interventions designed to curtail drinking and driving in Vietnam and other developing countries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This presentation relates to a paper presenting an explanation of why the reuse of building components after demolition or deconstruction is critical to the future of the construction industry. An examination of the historical cause and response to climate change sets the scene as to why governance is becoming increasingly focused on the built environment as a mechanism to controlling waste generation associated with the process of demolition, construction and operation. Through an annotated description to the evolving design and construction methodology of a range of timber dwellings (typically 'Queenslanders' during the eras of 1880-1900, 1900-1920 & 1920-1940) the paper offers an evaluation to the variety of materials, which can be used advantageously by those wishing to 'regenerate' a Queenslander. This analysis of 'regeneration' details the constraints when considering relocation and/ or reuse by adaption including deconstruction of building components against the legislative framework requirements of the Queensland Building Act 1975 and the Queensland Sustainable Planning Act 2009, with a specific examination to those of the Building Codes of Australia. The paper concludes with a discussion of these constraints, their impacts on 'regeneration' and the need for further research to seek greater understanding of the practicalities and drivers of relocation, adaptive and building components suitability for reuse after deconstruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solar ultraviolet (UV) radiation causes a range of skin disorders as well as affecting vision and the immune system. It also inhibits development of plants and animals. UV radiation monitoring is used routinely in some locations in order to alert the population to harmful solar radiation levels. There is ongoing research to develop UV-selective-sensors [1–3]. A personal, inexpensive and simple UV-selective-sensor would be desirable to measure UV intensity exposure. A prototype of such a detector has been developed and evaluated in our laboratory. It comprises a sealed two-electrode photoelectrochemical cell (PEC) based on nanocrystalline TiO2. This abundant semiconducting oxide, which is innocuous and very sta-ble, is the subject of intense study at present due to its application in dye sensitized solar cells (DSSC) [4]. Since TiO2 has a wide band gap (EG = 3.0 eV for rutile and EG = 3.2 eV for anatase), it is inher-ently UV-selective, so that UV filters are not required. This further reduces the cost of the proposed photodetector in comparison with conventional silicon detectors. The PEC is a semiconductor–electrolyte device that generates a photovoltage when it is illuminated and a corresponding photocur-rent if the external circuit is closed. The device does not require external bias, and the short circuit current is generally a linear function of illumination intensity. This greatly simplifies the elec-trical circuit needed when using the PEC as a photodetector. DSSC technology, which is based on a PEC containing nanocrystalline TiO2 sensitized with a ruthenium dye, holds out the promise of solar cells that are significantly cheaper than traditional silicon solar cells. The UV-sensor proposed in this paper relies on the cre-ation of electron–hole pairs in the TiO2 by UV radiation, so that it would be even cheaper than a DSSC since no sensitizer dye is needed. Although TiO2 has been reported as a suitable material for UV sensing [3], to the best of our knowledge, the PEC configuration described in the present paper is a new approach. In the present study, a novel double-layer TiO2 structure has been investigated. Fabrication is based on a simple and inexpensive technique for nanostructured TiO2 deposition using microwave-activated chemical bath deposition (MW-CBD) that has been reported recently [5]. The highly transparent TiO2 (anatase) films obtained are densely packed, and they adhere very well to the transparent oxide (TCO) substrate [6]. These compact layers have been studied as contacting layers in double-layer TiO2 structures for DSSC since improvement of electron extraction at the TiO2–TCO interface is expected [7]. Here we compare devices incorporating a single mesoporous nanocrystalline TiO2 structure with devices based on a double structure in which a MW-CBD film is situated between the TCO and the mesoporous nanocrystalline TiO2 layer. Besides improving electron extraction, this film could also help to block recombination of electrons transferred to the TCO with oxidized species in the electrolyte, as has been reported in the case of DSSC for compact TiO2 films obtained by other deposition tech-niques [8,9]. The two types of UV-selective sensors were characterized in detail. The current voltage characteristics, spectral response, inten-sity dependence of short circuit current and response times were measured and analyzed in order to evaluate the potential of sealed mesoporous TiO2-based photoelectrochemical cells (PEC) as low cost personal UV-photodetectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damage detection in structures has become increasingly important in recent years. While a number of damage detection and localization methods have been proposed, few attempts have been made to explore the structure damage with frequency response functions (FRFs). This paper illustrates the damage identification and condition assessment of a beam structure using a new frequency response functions (FRFs) based damage index and Artificial Neural Networks (ANNs). In practice, usage of all available FRF data as an input to artificial neural networks makes the training and convergence impossible. Therefore one of the data reduction techniques Principal Component Analysis (PCA) is introduced in the algorithm. In the proposed procedure, a large set of FRFs are divided into sub-sets in order to find the damage indices for different frequency points of different damage scenarios. The basic idea of this method is to establish features of damaged structure using FRFs from different measurement points of different sub-sets of intact structure. Then using these features, damage indices of different damage cases of the structure are identified after reconstructing of available FRF data using PCA. The obtained damage indices corresponding to different damage locations and severities are introduced as input variable to developed artificial neural networks. Finally, the effectiveness of the proposed method is illustrated and validated by using the finite element modal of a beam structure. The illustrated results show that the PCA based damage index is suitable and effective for structural damage detection and condition assessment of building structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical solution is presented in this paper for the vibration response of a ribbed plate clamped on all its boundary edges by employing a travelling wave solution. A clamped ribbed plate test rig is also assembled in this study for the experimental investigation of the ribbed plate response and to provide verification results to the analytical solution. The dynamic characteristics and mode shapes of the ribbed plate are measured and compared to those obtained from the analytical solution and from finite element analysis (FEA). General good agreements are found between the results. Discrepancies between the computational and experimental results at low and high frequencies are also discussed. Explanations are offered in the study to disclose the mechanism causing the discrepancies. The dependency of the dynamic response of the ribbed plate on the distance between the excitation force and the rib is also investigated experimentally. It confirms the findings disclosed in a previous analytical study [T. R. Lin and J. Pan, A closed form solution for the dynamic response of finite ribbed plates. Journal of the Acoustical Society of America 119 (2006) 917-925] that the vibration response of a clamped ribbed plate due to a point force excitation is controlled by the plate stiffness when the source is more than a quarter plate bending wavelength away from the rib and from the plate boundary. The response is largely affected by the rib stiffness when the source location is less than a quarter bending wavelength away from the rib.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metallic materials exposed to oxygen-enriched atmospheres – as commonly used in the medical, aerospace, aviation and numerous chemical processing industries – represent a significant fire hazard which must be addressed during design, maintenance and operation. Hence, accurate knowledge of metallic materials flammability is required. Reduced gravity (i.e. space-based) operations present additional unique concerns, where the absence of gravity must also be taken into account. The flammability of metallic materials has historically been quantified using three standardised test methods developed by NASA, ASTM and ISO. These tests typically involve the forceful (promoted) ignition of a test sample (typically a 3.2 mm diameter cylindrical rod) in pressurised oxygen. A test sample is defined as flammable when it undergoes burning that is independent of the ignition process utilised. In the standardised tests, this is indicated by the propagation of burning further than a defined amount, or „burn criterion.. The burn criterion in use at the onset of this project was arbitrarily selected, and did not accurately reflect the length a sample must burn in order to be burning independent of the ignition event and, in some cases, required complete consumption of the test sample for a metallic material to be considered flammable. It has been demonstrated that a) a metallic material.s propensity to support burning is altered by any increase in test sample temperature greater than ~250-300 oC and b) promoted ignition causes an increase in temperature of the test sample in the region closest to the igniter, a region referred to as the Heat Affected Zone (HAZ). If a test sample continues to burn past the HAZ (where the HAZ is defined as the region of the test sample above the igniter that undergoes an increase in temperature of greater than or equal to 250 oC by the end of the ignition event), it is burning independent of the igniter, and should be considered flammable. The extent of the HAZ, therefore, can be used to justify the selection of the burn criterion. A two dimensional mathematical model was developed in order to predict the extent of the HAZ created in a standard test sample by a typical igniter. The model was validated against previous theoretical and experimental work performed in collaboration with NASA, and then used to predict the extent of the HAZ for different metallic materials in several configurations. The extent of HAZ predicted varied significantly, ranging from ~2-27 mm depending on the test sample thermal properties and test conditions (i.e. pressure). The magnitude of the HAZ was found to increase with increasing thermal diffusivity, and decreasing pressure (due to slower ignition times). Based upon the findings of this work, a new burn criterion requiring 30 mm of the test sample to be consumed (from the top of the ignition promoter) was recommended and validated. This new burn criterion was subsequently included in the latest revision of the ASTM G124 and NASA 6001B international test standards that are used to evaluate metallic material flammability in oxygen. These revisions also have the added benefit of enabling the conduct of reduced gravity metallic material flammability testing in strict accordance with the ASTM G124 standard, allowing measurement and comparison of the relative flammability (i.e. Lowest Burn Pressure (LBP), Highest No-Burn Pressure (HNBP) and average Regression Rate of the Melting Interface(RRMI)) of metallic materials in normal and reduced gravity, as well as determination of the applicability of normal gravity test results to reduced gravity use environments. This is important, as currently most space-based applications will typically use normal gravity information in order to qualify systems and/or components for reduced gravity use. This is shown here to be non-conservative for metallic materials which are more flammable in reduced gravity. The flammability of two metallic materials, Inconel® 718 and 316 stainless steel (both commonly used to manufacture components for oxygen service in both terrestrial and space-based systems) was evaluated in normal and reduced gravity using the new ASTM G124-10 test standard. This allowed direct comparison of the flammability of the two metallic materials in normal gravity and reduced gravity respectively. The results of this work clearly show, for the first time, that metallic materials are more flammable in reduced gravity than in normal gravity when testing is conducted as described in the ASTM G124-10 test standard. This was shown to be the case in terms of both higher regression rates (i.e. faster consumption of the test sample – fuel), and burning at lower pressures in reduced gravity. Specifically, it was found that the LBP for 3.2 mm diameter Inconel® 718 and 316 stainless steel test samples decreased by 50% from 3.45 MPa (500 psia) in normal gravity to 1.72 MPa (250 psia) in reduced gravity for the Inconel® 718, and 25% from 3.45 MPa (500 psia) in normal gravity to 2.76 MPa (400 psia) in reduced gravity for the 316 stainless steel. The average RRMI increased by factors of 2.2 (27.2 mm/s in 2.24 MPa (325 psia) oxygen in reduced gravity compared to 12.8 mm/s in 4.48 MPa (650 psia) oxygen in normal gravity) for the Inconel® 718 and 1.6 (15.0 mm/s in 2.76 MPa (400 psia) oxygen in reduced gravity compared to 9.5 mm/s in 5.17 MPa (750 psia) oxygen in normal gravity) for the 316 stainless steel. Reasons for the increased flammability of metallic materials in reduced gravity compared to normal gravity are discussed, based upon the observations made during reduced gravity testing and previous work. Finally, the implications (for fire safety and engineering applications) of these results are presented and discussed, in particular, examining methods for mitigating the risk of a fire in reduced gravity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the vulnerability of masonry under shear; first the mechanisms of in-plane and out-of-plane shear performance of masonry are reviewed; both the unreinforced and lightly reinforced masonry wall systems are considered. Factors affecting the response of unreinforced and reinforced masonry to shear are described and the effect of the variability of those factors to the failure mode of masonry shear walls is also discussed. Some critique is provided on the existing design provisions in various masonry standards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper I examine the recent arguments by Charles Foster, Jonathan Herring, Karen Melham and Tony Hope against the utility of the doctrine of double effect. One basis on which they reject the utility of the doctrine is their claim that it is notoriously difficult to apply what they identify as its 'core' component, namely, the distinction between intention and foresight. It is this contention that is the primarily focus of my article. I argue against this claim that the intention/foresight distinction remains a fundamental part of the law in those jurisdictions where intention remains an element of the offence of murder and that, accordingly, it is essential ro resolve the putative difficulties of applying the intention/foresight distinction so as to ensure the integrity of the law of murder. I argue that the main reasons advanced for the claim that the intention/foresight distinction is difficult to apply are ultimately unsustainable, and that the distinction is not as difficult to apply as the authors suggest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium alloys have been of growing interest to various engineering applications, such as the automobile, aerospace, communication and computer industries due to their low density, high specific strength, good machineability and availability as compared with other structural materials. However, most Mg alloys suffer from poor plasticity due to their Hexagonal Close Packed structure. Grain refinement has been proved to be an effective method to enhance the strength and alter the ductility of the materials. Several methods have been proposed to produce materials with nanocrystalline grain structures. So far, most of the research work on nanocrystalline materials has been carried out on Face-Centered Cubic and Body-Centered Cubic metals. However, there has been little investigation of nanocrystalline Mg alloys. In this study, bulk coarse-grained and nanocrystalline Mg alloys were fabricated by a mechanical alloying method. The mixed powder of Mg chips and Al powder was mechanically milled under argon atmosphere for different durations of 0 hours (MA0), 10 hours (MA10), 20 hours (MA20), 30 hours (MA30) and 40 hours (MA40), followed by compaction and sintering. Then the sintered billets were hot-extruded into metallic rods with a 7 mm diameter. The obtained Mg alloys have a nominal composition of Mg–5wt% Al, with grain sizes ranging from 13 μm down to 50 nm, depending on the milling durations. The microstructure characterization and evolution after deformation were carried out by means of Optical microscopy, X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Scanning Probe Microscopy and Neutron Diffraction techniques. Nanoindentaion, compression and micro-compression tests on micro-pillars were used to study the size effects on the mechanical behaviour of the Mg alloys. Two kinds of size effects on the mechanical behaviours and deformation mechanisms were investigated: grain size effect and sample size effect. The nanoindentation tests were composed of constant strain rate, constant loading rate and indentation creep tests. The normally reported indentation size effect in single crystal and coarse-grained crystals was observed in both the coarse-grained and nanocrystalline Mg alloys. Since the indentation size effect is correlated to the Geometrically Necessary Dislocations under the indenter to accommodate the plastic deformation, the good agreement between the experimental results and the Indentation Size Effect model indicated that, in the current nanocrystalline MA20 and MA30, the dislocation plasticity was still the dominant deformation mechanism. Significant hardness enhancement with decreasing grain size, down to 58 nm, was found in the nanocrystalline Mg alloys. Further reduction of grain size would lead to a drop in the hardness values. The failure of grain refinement strengthening with the relatively high strain rate sensitivity of nanocrystalline Mg alloys suggested a change in the deformation mechanism. Indentation creep tests showed that the stress exponent was dependent on the loading rate during the loading section of the indentation, which was related to the dislocation structures before the creep starts. The influence of grain size on the mechanical behaviour and strength of extruded coarse-grained and nanocrystalline Mg alloys were investigated using uniaxial compression tests. The macroscopic response of the Mg alloys transited from strain hardening to strain softening behaviour, with grain size reduced from 13 ìm to 50 nm. The strain hardening was related to the twinning induced hardening and dislocation hardening effect, while the strain softening was attributed to the localized deformation in the nanocrystalline grains. The tension–compression yield asymmetry was noticed in the nanocrystalline region, demonstrating the twinning effect in the ultra-fine-grained and nanocrystalline region. The relationship k tensions < k compression failed in the nanocrystalline Mg alloys; this was attributed to the twofold effect of grain size on twinning. The nanocrystalline Mg alloys were found to exhibit increased strain rate sensitivity with decreasing grain size, with strain rate ranging from 0.0001/s to 0.01/s. Strain rate sensitivity of coarse-grained MA0 was increased by more than 10 times in MA40. The Hall-Petch relationship broke down at a critical grain size in the nanocrystalline region. The breakdown of the Hall-Petch relationship and the increased strain rate sensitivity were due to the localized dislocation activities (generalization and annihilation at grain boundaries) and the more significant contribution from grain boundary mediated mechanisms. In the micro-compression tests, the sample size effects on the mechanical behaviours were studied on MA0, MA20 and MA40 micro-pillars. In contrast to the bulk samples under compression, the stress-strain curves of MA0 and MA20 micro-pillars were characterized with a number of discrete strain burst events separated by nearly elastic strain segments. Unlike MA0 and MA20, the stress-strain curves of MA40 micro-pillars were smooth, without obvious strain bursts. The deformation mechanisms of the MA0 and MA20 micro-pillars under micro-compression tests were considered to be initially dominated by deformation twinning, followed by dislocation mechanisms. For MA40 pillars, the deformation mechanisms were believed to be localized dislocation activities and grain boundary related mechanisms. The strain hardening behaviours of the micro-pillars suggested that the grain boundaries in the nanocrystalline micro-pillars would reduce the source (nucleation sources for twins/dislocations) starvation hardening effect. The power law relationship of the yield strength on pillar dimensions in MA0, MA20 supported the fact that the twinning mechanism was correlated to the pre-existing defects, which can promote the nucleation of the twins. Then, we provided a latitudinal comparison of the results and conclusions derived from the different techniques used for testing the coarse-grained and nanocrystalline Mg alloy; this helps to better understand the deformation mechanisms of the Mg alloys as a whole. At the end, we summarized the thesis and highlighted the conclusions, contributions, innovations and outcomes of the research. Finally, it outlined recommendations for future work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND:Chlamydia trachomatis is a major cause of sexually transmitted disease in humans. Previous studies in both humans and animal models of chlamydial genital tract infection have suggested that the hormonal status of the genital tract epithelium at the time of exposure can influence the outcome of the chlamydial infection. We performed a whole genome transcriptional profiling study of C. trachomatis infection in ECC-1 cells under progesterone or estradiol treatment.RESULTS:Both hormone treatments caused a significant shift in the sub-set of genes expressed (25% of the transcriptome altered by more than 2-fold). Overall, estradiol treatment resulted in the down-regulation of 151 genes, including those associated with lipid and nucleotide metabolism. Of particular interest was the up-regulation in estradiol-supplemented cultures of six genes (omcB, trpB, cydA, cydB, pyk and yggV), which suggest a stress response similar to that reported previously in other models of chlamydial persistence. We also observed morphological changes consistent with a persistence response. By comparison, progesterone supplementation resulted in a general up-regulation of an energy utilising response.CONCLUSION:Our data shows for the first time, that the treatment of chlamydial host cells with key reproductive hormones such as progesterone and estradiol, results in significantly altered chlamydial gene expression profiles. It is likely that these chlamydial expression patterns are survival responses, evolved by the pathogen to enable it to overcome the host's innate immune response. The induction of chlamydial persistence is probably a key component of this survival response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our cross-national field study of wine entrepreneurship in the “wrong” places provides some redress to the focus of the “regional advantage” literature on places that have already won and on the firms that benefit from “clusters” and other centers of industry advantage. Regional “disadvantage” is at best a shadowy afterthought to this literature. By poking around in these shadows, we help to synthesize and extend the incipient yet burgeoning literature on entrepreneurial “resourcefulness” and we contribute to the developing body of insights and theory pertinent to the numerous but often ignored firms and startups that mostly need to worry about how they will compete at all now if they are ever to have of chance of “winning” in the future. The core of our findings suggests that understandable – though contested – processes of ingenuity underlie entrepreneurial responses to regional disadvantage. Because we study entrepreneurship that from many angles simply does not make sense, we are also able to proffer a novel perspective on entrepreneurial sensemaking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium (Ca) is the main element of most pulp capping materials and plays an essential role in mineralization. Different pulp capping materials can release various concentrations of Ca ions leading to different clinical outcomes. The purpose of this study was to investigate the effects of various concentrations of Ca ions on the growth and osteogenic differentiation of human dental pulp cells (hDPCs). Different concentrations of Ca ions were added to growth culture medium and osteogenic inductive culture medium. A Cell Counting Kit-8 (CCK-8) was used to determine the proliferation of hDPCs in growth culture medium. Osteogenic differentiation and mineralization were measured by alkaline phosphatase (ALP) assay, Alizarin red S/von kossa staining, calcium content quantitative assay. The selected osteogenic differentiation markers were investigated by quantitative real-time polymerase chain reaction (qRT-PCR). Within the range of 1.8–16.2 mM, increased concentrations of Ca ions had no effect on cell proliferation, but led to changes in osteogenic differentiation. It was noted that enhanced mineralized matrix nodule formation was found in higher Ca ions concentrations; however, ALP activity and gene expression were reduced. qRT-PCR results showed a trend towards down-regulated mRNA expression of type I collagen (COL1A2) and Runx2 at elevated concentrations of Ca ions, whereas osteopontin (OPN) and osteocalcin (OCN) mRNA expression was significantly up-regulated. Ca ions content in the culture media can significantly influence the osteogenic properties of hDPCs, indicating the importance of optimizing Ca ions release from dental pulp capping materials in order to achieve desirable clinical outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bcl-2-associated athanogene (BAG) family is an evolutionarily conserved, multifunctional group of cochaperones that perform diverse cellular functions ranging from proliferation to growth arrest and cell death in yeast, in mammals, and, as recently observed, in plants. The Arabidopsis genome contains seven homologs of the BAG family, including four with domain organization similar to animal BAGs. In the present study we show that an Arabidopsis BAG, AtBAG7, is a uniquely localized endoplasmic reticulum (ER) BAG that is necessary for the proper maintenance of the unfolded protein response (UPR). AtBAG7was shown to interact directly in vivo with themolecular chaperone, AtBiP2, by bimolecular fluorescence complementation assays, and the interaction was confirmed by yeast two-hybrid assay. Treatment with an inducer of UPR, tunicamycin, resulted in accelerated cell death of AtBAG7-null mutants. Furthermore, AtBAG7 knockouts were sensitive to known ER stress stimuli, heat and cold. In these knockouts heat sensitivity was reverted successfully to the wild-type phenotype with the addition of the chemical chaperone, tauroursodexycholic acid (TUDCA). Real-time PCR of ER stress proteins indicated that the expression of the heat-shock protein, AtBiP3, is selectively up-regulated in AtBAG7-null mutants upon heat and cold stress. Our results reveal an unexpected diversity of the plant's BAG gene family and suggest that AtBAG7 is an essential component of the UPR during heat and cold tolerance, thus confirming the cytoprotective role of plant BAGs.