995 resultados para Hard material
Resumo:
The La0.85MgxNi4.5Co0.35Al0.15 (0.05less than or equal toxless than or equal to0.35) system compounds have been prepared by are melting method under Ar atmosphere. X-ray diffraction (XRD) analysis reveals that the as-prepared alloys have different lattice parameters and cell volumes. The electrochemical properties of these alloys have been studied through the charge-discharge recycle testing at different temperatures and discharge currents. It is found that the La0.85Mg0.25Ni4.5Co0.35Al0.(15) alloy electrode is capable of performing high-rate discharge. Moreover, it has very excellent electrochemical properties as negative electrode materials in Ni-MH battery at low temperature, even at -40degreesC.
Resumo:
In this paper, BPO4 and Ba2+-doped BPO4 powder samples were prepared by the sol-gel process using glycerol and poly(ethylene glycol) as additives. The structure and optical properties of the resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), diffuse reflection spectra, photoluminescence (PL) excitation and emission spectra, quantum yield, kinetic decay, and electron paramagnetic resonance (EPR), respectively. It was found that the undoped BPO4 showed a weak purple blue emission (409 nm, lifetime 6.4 ns) due to the carbon impurities involved in the host lattice. Doping Ba2+ into BPO4 resulted in oxygen-related defects as additional emission centers which enhanced the emission intensity greatly (> 10x) and shifted the emission to a longer-wavelength region (lambda(max) = 434 nm; chromaticity coordinates: x = 0.174, y = 0. 187) with a bluish-white color. The highest emission intensity was obtained ;when doping 6 mol % Ba2+ in BPO4, which has a quantum yield as high as 31%. The luminescent mechanisms of BPO4 and Ba2+-doped BPO4 were discussed in detail according to the existing models for silica-based materials.
Resumo:
The facile synthesis of the novel platinum nanoparticles/Eastman AQ55D/ruthenium(II) tris( bipyridine) (PtNPs/ AQ/Ru(bpy)(3)(2+)) colloidal material for ultrasensitive ECL solid-state sensors was reported for the first time. The cation ion-exchanger AQ was used not only to immobilize ECL active species Ru(bpy)(3)(2+) but also as the dispersant of PtNPs. Colloidal characterization was accomplished by transmission electron microscopy (TEM), X-ray photoelectron spectrum (XPS), and UV-vis spectroscopy. Directly coating the as-prepared colloid on the surface of a glassy carbon electrode produces an electrochemiluminescence (ECL) sensor. The electronic conductivity and electroactivity of PtNPs in composite film made the sensor exhibit faster electron transfer, higher ECL intensity of Ru(bpy)(3)(2+), and a shorter equilibration time than Ru(bpy)(3)(2+) immobilized in pure AQ film. Furthermore, it was demonstrated that the combination of PtNPs and permselective cation exchanger made the sensor exhibite excellent ECL behavior and stability and a very low limit of detection (1 x 10(-15) M) of tripropylamine with application prospects in bioanalysis. This method was very simple, effective, and low cost.
Resumo:
First-principle calculations are performed to investigate the structural, elastic, and electronic properties of ReB2 and WB2. The calculated equilibrium structural parameters of ReB2 are consistent with the available experimental data. The calculations indicate that WB2 in the P6(3)/mmc space group is more energetically stable under the ambient condition than in the P6/mmm. Based on the calculated bulk modulus, shear modulus of polycrystalline aggregate, ReB2 and WB2 can be regarded as potential candidates of ultra-incompressible and hard materials. Furthermore, the elastic anisotropy is discussed by investigating the elastic stiffness constants. Density of states and electron density analysis unravel the covalent bonding between the transition metal atoms and the boron atoms as the driving force of the high bulk modulus and high shear modulus as well as small Poisson's ratio.
Resumo:
A new electrogenerated chemiluminescence biosensor was fabricated by immobilizing ECL reagent Ru(bPY)(3)(2+) and alcohol dehydrogenase in sol-gel/chitosan/poly(sodium 4-styrene sulfonate) (PSS) organically modified composite material. The component PSS was used to immobilize ECL reagent Ru(bpy)(3)(2+) by ion-exchange, while the addition of chitosan was to prevent the cracking of conventional sol-gel-derived glasses and provide biocompatible microenvironment for alcohol dehydrogenase. Such biosensor combined enzymatic selectivity with the sensitivity of ECL detection for quantification of enzyme substrate and it was much simpler than previous double-layer design. The detection limit was 9.3 x 10(-6) M for alcohol (S/N = 3) with a linear range from 2.79 x 10(-5) to 5.78 x 10(-2) M. With ECL detection, the biosensor exhibited wide linear range, high sensitivity and good stability.
Resumo:
Neodymium-cerium oxide (Nd2Ce2O7) was proposed as a new thermal barrier coating material in this work. Monolithic Nd2Ce2O7 powder was prepared by the solid-state reaction at 1400 degrees C. The phase composition, thermal stability and thermophysical properties of Nd2Ce2O7 were investigated. Nd2Ce2O7 with fluorite structure was thermally stable in the temperature range of interest for TBC applications. The results indicated that the thermal expansion coefficient (TEC) of Nd2Ce2O7 was higher than that of YSZ (6-8 Wt-% Y2O3 + ZrO2) and even more interesting was the TEC change as a function of temperature paralleling that of the superalloy bond coat. Moreover, the thermal conductivity of Nd2Ce2O7 is 30% lower than that of YSZ, which was discussed based on the theory of heat conduction. Thermal barrier coating of Nd2Ce2O7 was produced by atmospheric plasma spraying (APS) using the spray-dried powder. The thermal cycling was performed with a gas burner test facility to examine the thermal stability of the as-prepared coating.
Resumo:
In our study, the Eu2+ doped Li2CaSiO4 phosphors were initially synthesized by high temperature solid state method, and their luminescent properties were also investigated. Eu2+ ions occupied 8-coordinatid distorted dodecahedral Ca sites, leading to strong crystal field splitting. The strong crystal field splitting made the broad excitation band extending from UV to visible region. In addition, the high concentration of Li+ ions in the structure constrained the distortion of the emission centers, then resulted in a small stokes shift, similar to 1100 cm(-1). Under excitation, the Li2CaSiO4:Eu2+ phosphors emitted bluish green light with peak of 480 nm, FWHM of 31 nm and color coordination of (0.06, 0.44). The Eu2+ doped Li2CaSiO4 phosphor would be suitable for bluish green phosphor of white LEDs due to its excellent excitation profile and chromaticity.
Resumo:
A novel type of biochemical oxygen demand (BOD) biosensor was developed for water monitor, based on co-immobilizing of Trichosporon cutaneum and Bacillus subtilis in the sol-gel derived composite material which is composed of silica and the grafting copolymer of poly (vinyl alcohol) and 4-vinylpyridine (PVA-g-P(4-VP)). Factors that influence the performance of the resulting biosensor were examined. The biodegradable substrate spectrum could be expanded by the co-immobilized microorganisms. The biosensor prepared also exhibited good reproducibility and long-term stability. Good agreement was obtained between the results of the sensor BOD measurement and those obtained from conventional BOD5 method for water samples.
Resumo:
The system Al2O3-B2O3 containing Ce3+ and Tb3+ ions was investigated for the first time. It was found that certain compositions give rise to a new highly efficient green luminescent material.
Resumo:
We synthesized a hydroxyphenyloxadiazole lithium complex (LiOXD) as a blue light-emitting and electron injection/transport material to be used in double-layer organic electroluminescent devices. Devices with the concise configuration of ITO/TPD/LiOXD/Al showed bright blue EL emission centered at 468 nm with a maximum luminance of 2900 cd m(-2). A current efficiency of 3.9 cd A(-1) and power efficiency of 1.1 lm W-1 were obtained. LiOXD was also examined as an interface material. The efficiency of an ITO/NPB/Alq(3)/Al device increased considerably when LiOXD was inserted between Alq(3) and aluminium. The improvement of the device characteristics with LiOXD approached that observed with the dielectric LiF salt.
Resumo:
The nanostructured material (NSM) of pure silica MCM-41 molecular sieve was synthesized with tetraethyl orthosilicate (TEOS) as the source of silica and cetyltrimethylammonium bromide (CTMABr) as the template under supersonic wave condition. Then NSM of (CH3)(3)Si-MCM-41 was obtained by introducing trimethylsilyl to MCM-41. (CH3)(3)Si-MCM-41 showed the similar TEM and XRD photographs with the normal crystal of MCM-41 and the diameter of the NSM crystallites with a hexagon shape is of about 10-40 nm. The dispersivity of (CH3)(3)Si-MCM-41 prevails over the NSM of MCM-41 as its hydrophobicity. The fluorescent intensity of (CH3)(3)Si-MCM-41 is 3.4 times as that of the MCM-41. The luminescent functional supramolecular nanostructured material was prepared in EtOH, and characterized by TEM, HRTEM, XRD, TG, IR, and elemental analysis. The results showed that the [Eu(Phen)(4)](NO3)(3) had entered into the channels of nanosized mesoporous sieve of (CH3)(3)Si-MCM-41, forming discrete centers of luminescence. The energy transferring of the host to guest, superficial effect of NSM, quanta tunnel effect, and discrete luminescent center result in the fluorescent intensity of the supramolecule enhancement.