994 resultados para Habit formation
Resumo:
High speed photographic images of jets formed from dilute solutions of polystyrene in diethyl phthalate ejected from a piezoelectric drop-on-demand inkjet head have been analyzed in order to study the formation and distribution of drops as the ligament collapses. Particular attention has been paid to satellite drops, and their relative separation and sizes. The effect of polymer concentration was investigated. The distribution of nearest-neighbour centre spacing between the drops formed from the ligament is better described by a 2-parameter modified gamma distribution than by a Gaussian distribution. There are (at least) two different populations of satellite size relative to the main drop size formed at normal jetting velocities, with ratios of about three between the diameters of the main drop and the successive satellite sizes. The distribution of the differences in drop size between neighbouring drops is close to Gaussian, with a small non-zero mean for low polymer concentrations, which is associated with the conical shape of the ligament prior to its collapse and the formation of satellites. Higher polymer concentrations result in slower jets for the same driving impulse, and also a tendency to form ligaments with a near-constant width. Under these conditions the mean of the distribution of differences in nearest-neighbour drop size was zero.
Resumo:
The food of Penaeus monodon collected from Makato R., from Sept 1977 to Jan 1978 is described with preliminary observations on its feeding habit and rate of foregut clearance. Feeding behaviour appears to be associated with the tidal phase. Foregut clearance rate is rapid, with 95% of food transported from the foregut 4 h after feeding. Frequency of occurrence and proportion of total food of various foregut contents are shown, as are dry weight, percentage mineral, organic and crude protein nitrogen from individual and pooled samples of gut contents, and foregut index in P. monodon collected during different phases of one tidal cycle.
Simulation of NOx Formation in Dilute H2/CO/ N2-Air Diffusion Flames Using Full and Reduced Kinetics
Resumo:
In xenotransplantation, donor endothelium is the first target of immunological attack. Activation of the endothelial cell by preformed natural antibodies leads to platelet binding via the interaction of the glycoprotein (GP) Ib and von Willebrand factor (vWF). TMVA is a novel GPIb-binding protein purified from the venom of Trimeresurus mucrosquamatus. In this study, the inhibitory effect of TMVA on platelet aggregation in rats and the effect on discordant guinea pig-to-rat cardiac xenograft survival were investigated. Three doses (8, 20 or 40 mug/kg) of TMVA were infused intravenously to 30 rats respectively. Platelet aggregation rate was assayed 0.5, 12, and 24 h after TMVA administration. Wister rats underwent guinea pig cardiac cervical heterotopic transplantation using single dosing of TMVA (20 mug/kg, i.v., 0.5 h before reperfusion). Additionally, levels of TXB2 and 6-keto-PGF(1alpha) within rejected graft tissues were determined by radioimmunoassay. Treatment with TMVA at a dose of 20 or 40 mug/kg resulted in complete inhibition of platelet aggregation 0.5 h after TMVA administration. Rats receiving guinea pig cardiac xenografts after TMVA therapy had significantly prolonged xenograft survival. Histologic and immunopathologic analysis of cardiac xenografts in TMVA treatment group showed no intragraft platelet microthrombi formation and fibrin deposition. Additionally, the ratio of 6-keto-PGF(1alpha) to TXB2 in TMVA treatment group was significantly higher than those in control group. We conclude that the use of this novel GPIb-binding protein was very effective in preventing platelet microthrombi formation and fibrin deposition in a guinea pig-to-rat model and resulted in prolongation of xenograft survival. The increased ratio of PGI(2)/TXA(2) in TMVA treatment group may protect xenografts from the endothelial cell activation and contribute to the prolongation of xenograft survival.
Resumo:
We have for the first time developed a self-aligned metal catalyst formation process using fully CMOS (complementary metal-oxide-semiconductor) compatible materials and techniques, for the synthesis of aligned carbon nanotubes (CNTs). By employing an electrically conductive cobalt disilicide (CoSi 2) layer as the starting material, a reactive ion etch (RIE) treatment and a hydrogen reduction step are used to transform the CoSi 2 surface into cobalt (Co) nanoparticles that are active to catalyze aligned CNT growth. Ohmic contacts between the conductive substrate and the CNTs are obtained. The process developed in this study can be applied to form metal nanoparticles in regions that cannot be patterned using conventional catalyst deposition methods, for example at the bottom of deep holes or on vertical surfaces. This catalyst formation method is crucially important for the fabrication of vertical and horizontal interconnect devices based on CNTs. © 2012 American Institute of Physics.
Resumo:
We investigate the effect of a perpendicular magnetic field on the single-particle charging spectrum of a graphene quantum dot embedded inline with a nanoribbon. We observe uniform shifts in the single-particle spectrum which coincide with peaks in the magnetoconductance, implicating Landau level condensation and edge state formation as the mechanism underlying magnetic field-enhanced transmission through graphene nanostructures. The experimentally determined ratio of bulk to edge states is supported by single-particle band-structure simulations, while a fourfold beating of the Coulomb blockade transmission amplitude points to many-body interaction effects during Landau level condensation of the ν=0 state. © 2012 American Physical Society.