897 resultados para HYPERSPECTRAL IMAGES
Resumo:
Traffic Control Signs or destination boards on roadways offer significant information for drivers. Regulation signs tell something like your speed, turns, etc; Warning signs warn drivers of conditions ahead to help them avoid accidents; Destination signs show distances and directions to various locations; Service signs display location of hospitals, gas and rest areas etc. Because the signs are so important and there is always a certain distance from them to drivers, to let the drivers get information clearly and easily even in bad weather or other situations. The idea is to develop software which can collect useful information from a special camera which is mounted in the front of a moving car to extract the important information and finally show it to the drivers. For example, when a frame contains on a destination drive sign board it will be text something like "Linkoping 50",so the software should extract every character of "Linkoping 50", compare them with the already known character data in the database. if there is extracted character match "k" in the database then output the destination name and show to the driver. In this project C++ will be used to write the code for this software.
Resumo:
The purpose of this thesis is to develop a working methodology to color a grey scale image. This thesis is based on approach of using a colored reference image. Coloring grey scale images has no exact solution till date and all available methods are based on approximation. This technique of using a color reference image for approximating color information in grey scale image is among most modern techniques.Method developed here in this paper is better than existing methods of approximation of color information addition in grey scale images in brightness, sharpness, color shade gradients and distribution of colors over objects.Color and grey scale images are analyzed for statistical and textural features. This analysis is done only on basis of luminance value in images. These features are then segmented and segments of color and grey scale images are mapped on basis of distances of segments from origin. Then chromatic values are transferred between these matched segments from color image to grey scale image.Technique proposed in this paper uses better mechanism of mapping clusters and mapping colors between segments, resulting in notable improvement in existing techniques in this category.
Resumo:
NOGUEIRA, Marcelo B. ; MEDEIROS, Adelardo A. D. ; ALSINA, Pablo J. Pose Estimation of a Humanoid Robot Using Images from an Mobile Extern Camera. In: IFAC WORKSHOP ON MULTIVEHICLE SYSTEMS, 2006, Salvador, BA. Anais... Salvador: MVS 2006, 2006.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper presents a method for automatic identification of dust devils tracks in MOC NA and HiRISE images of Mars. The method is based on Mathematical Morphology and is able to successfully process those images despite their difference in spatial resolution or size of the scene. A dataset of 200 images from the surface of Mars representative of the diversity of those track features was considered for developing, testing and evaluating our method, confronting the outputs with reference images made manually. Analysis showed a mean accuracy of about 92%. We also give some examples on how to use the results to get information about dust devils, namelly mean width, main direction of movement and coverage per scene. (c) 2012 Elsevier Ltd. All rights reserved.
Magnetic images of the disintegration process of tablets in the human stomach by ac biosusceptometry
Resumo:
Oral administration of solid dosage forms is usually preferred in drug therapy. Conventional imaging methods are essential tools to investigate the in vivo performance of these formulations. The non-invasive technique of ac biosusceptometry has been introduced as an alternative in studies focusing on gastrointestinal motility and, more recently, to evaluate the behaviour of magnetic tablets in vivo. The aim of this work was to employ a multisensor ac biosusceptometer system to obtain magnetic images of disintegration of tablets in vitro and in the human stomach. The results showed that the transition between the magnetic marker and the magnetic tracer characterized the onset of disintegration (t(50)) and occurred in a short time interval (1.1 +/- 0.4 min). The multisensor ac biosusceptometer was reliable to monitor and analyse the in vivo performance of magnetic tablets showing accuracy to quantify disintegration through the magnetic images and to characterize the profile of this process.
Resumo:
Remote sensing is one technology of extreme importance, allowing capture of data from the Earth's surface that are used with various purposes, including, environmental monitoring, tracking usage of natural resources, geological prospecting and monitoring of disasters. One of the main applications of remote sensing is the generation of thematic maps and subsequent survey of areas from images generated by orbital or sub-orbital sensors. Pattern classification methods are used in the implementation of computational routines to automate this activity. Artificial neural networks present themselves as viable alternatives to traditional statistical classifiers, mainly for applications whose data show high dimensionality as those from hyperspectral sensors. This work main goal is to develop a classiffier based on neural networks radial basis function and Growing Neural Gas, which presents some advantages over using individual neural networks. The main idea is to use Growing Neural Gas's incremental characteristics to determine the radial basis function network's quantity and choice of centers in order to obtain a highly effective classiffier. To demonstrate the performance of the classiffier three studies case are presented along with the results.