936 resultados para HIGH-DIELECTRIC-CONSTANT
Resumo:
Magneto-transport measurements have been carried out on three heavily Si delta-doped In-0.52 Al-0.48 As/In-0.53 Ga-0.47 As/In-0.52 A(10.48) As single quantum well samples in which two subbands were occupied by electrons. The weak anti-localization (WAL) has been found in such high electron mobility systems. The strong Rashba spin-orbit (SO) coupling is due to the high structure inversion asymmetry (SIA) of the quantum wells. Since the WAL theory model is so complicated in fitting our experimental results, we obtained the Rashba SO coupling constant alpha and the zero-field spin splitting Delta(0) by an approximate approach. The results are consistent with that obtained by the Shubnikov-de Haas (SdH) oscillation analysis. The WAL effect in high electron mobility system suggests that finding a useful approach for deducing alpha and Delta(0) is important in designing future spintronics devices that utilize the Rashba SO coupling.
Resumo:
In this paper, we analyze light transmission through a single subwavelength slit surrounded by periodic grooves in layered films consisting of An and dielectric material. A subwavelength grating is scanned numerically by the finite difference time domain method in two dimensions. The results show that the transmission field can be confined to a spot with subwavelength width in the far field and can be useful in the application of a high-resolution far-field scanning optical microscope.
Resumo:
High power and long lifetime have been demonstrated for a semiconductor quantum-dot (QD) laser with five-stacked InAs/GaAs QDs separated by an InGaAs strain-reducing layer (SRL) and a GaAs spacer layer as an active medium. The QD lasers exhibit a peak power of 3.6 W at 1080 nm, a quantum slope efficiency of 84.6%, and an output-power degradation rate of 5.6%/1000 h with continuous-wave constant-current operation at room temperature. A comparative reliability investigation indicates that the lifetime of the InAs/GaAs QD laser with the InGaAs SRL is much longer than that of a QD laser without the InGaAs SRL. This improved lifetime of the QD laser could be explained by the reduction of strain in and around InAs QDs induced by the InGaAs SRL. (C) 2001 American Institute of Physics.
Resumo:
We report on high-frequency (300-700 GHz) ferromagnetic resonance (HF-FMR) measurements on cobalt superparamagnetic particles with strong uniaxial effective anisotropy. We derive the dynamical susceptibility of the system on the basis of an independent-grain model by using a rectangular approach. Numerical simulations give typical line shapes depending on the anisotropy, the gyromagnetic ratio, and the damping constant. HF-FMR experiments have been performed on two systems of ultrafine cobalt particles of different sizes with a mean number of atoms per particles of 150 +/- 20 and 310 +/- 20. In both systems, the magnetic anisotropy is found to be enhanced compared to the bulk value, and increases as the particle size decreases, in accordance with previous determinations from magnetization measurements. Although no size effect has been observed on the gyromagnetic ratio, the transverse relaxation time is two orders of magnitude smaller than the bulk value indicating strong damping effects, possibly originating from surface spin disorders.
Resumo:
In this paper fabrication of high power light emitting diodes (LEDs) with combined transparent electrodes on both P-GaN and N-GaN have been demonstrated. Simulation and experimental results show that comparing with traditional metal N electrodes the efficacy of LEDs with transparent N electrode is increased by more than 10% and it is easier in process than the other techniques. Further more, combining the transparent electrodes with dielectric anti-reflection film, the extraction efficiency can be improved by 5%. At the same time, the transparent electrodes were protected by the dielectric film and the reliability of LEDs can be improved.
Resumo:
Multicolored optical active planes have been fabricated with magnetron sputter method coupled with selective masking technique. The plane is multilayer structured with Ag nanoparticles and TiO2 thin layer as the building blocks. It was found that the formed multilayer can be readily wavelength multiplexed by simply overlapping several nano-Ag/TiO2 layered structures, each of which may have different surface plasmon resonance wavelength. Unlike high order multiple resonances of large particles each of the multiplexing wavelengths in such a system is separately tunable. Importantly, it reveals that modification of the TiO2 layer thickness generates a fine tuning of the resonance wavelength.
Resumo:
Multicolored optical active planes have been fabricated with magnetron sputter method coupled with selective masking technique. The plane is multilayer structured with Ag nanoparticles and TiO2 thin layer as the building blocks. It was found that the formed multilayer can be readily wavelength multiplexed by simply overlapping several nano-Ag/TiO2 layered structures, each of which may have different surface plasmon resonance wavelength. Unlike high order multiple resonances of large particles each of the multiplexing wavelengths in such a system is separately tunable. Importantly, it reveals that modification of the TiO2 layer thickness generates a fine tuning of the resonance wavelength.
Resumo:
Photoluminescence of GaInP under hydrostatic pressure is investigated. The Gamma valley of disordered GaInP shifts sublinearly upwards with respect to the top of the valence band with increasing pressure and this sublinearity is caused by the nonlinear relationship between lattice constant and hydrostatic pressure. The Gamma valleys of ordered GaInP rise more slowly than that of the disordered one and the relationship between the band gap and the pressure can not be explained in the same way. Taking into account the interactions between the Gamma valley and the folded L valleys, as well as, the X valleys, the experimental pressure dependences of the band gap of ordered GaInP epilayers are calculated and fitted quite well using first order perturbation theory. The results indicate that simultaneous ordering along [111] and [100] directions can occur in ordered GaInP. (C) 1996 American Institute of Physics.
Resumo:
The effect of changing Be doping concentration in GaAs layer on the integrated photosensitivity for nega- tive-electron-affinity GaAs photocathodes is investigated. Two GaAs samples with the monolayer structure and the muhilayer structure are grown by molecular beam epitaxy. The former has a constant Be concentration of 1 × 10^19 cm^-3, while the latter includes four layers with Be doping concentrations of 1 × 10^19, 7 × 10^18, 4 × 10^18, and 1 × 10^18 cm^-3 from the bottom to the surface. Negative-electron-affinity GaAs photocathodes are fabricated by exciting the sample surfaces with alternating input of Cs and O in the high vacuum system. The spectral response results measured by the on-line spectral response measurement system show that the integrated photosensitivity of the photocathode with the muhilayer structure enhanced by at least 50% as compared to that of the monolayer structure. This attributes to the improvement in the crystal quality and the increase in the surface escape probability. Different stress situations are observed on GaAs samples with monolayer structure and muhilayer structure, respectively.
Resumo:
Air-stable n-type field effect transistors were fabricated with an axially oxygen substituted metal phthalocyanine, tin (IV) phthalocyanine oxide (SnOPc), as active layers. The SnOPc thin films showed highly crystallinity on modified dielectric layer, and the electron field-effect mobility reached 0.44 cm(2) V-1 s(-1). After storage in air for 32 days, the mobility and on/off ratio did not obviously change. The above results also indicated that it is an effective approach of seeking n-type semiconductor by incorporating the appropriate metal connected with electron-withdrawing group into pi-pi conjugated system.
Resumo:
Two kinds of polymeric pH indicators PPF (phenolphthalein-formaldehyde product) and CPF (o-cresolphthalein-formaldehyde product) immobilized cross-linked poly(vinyl alcohol) membranes (PPF-PVA and CPF-PVA) for optical intermittent determination of high basicity ([OH-] = 1-8 M) based on a kinetic process were developed. In our previous work, we had demonstrated that PPF-PVA and CPF-PVA could perform the determination of high pH values from pH 10.0 to 14.0. Here the discoloring kinetic behaviors of PPF-PVA and CPF-PVA were compared with those of free phenolphthalein, o-cresolphthalein and thymolphthalein. Experimental results and theoretical analysis indicated that the response behaviors of the optodes' membranes in concentrated NaOH solutions were diffusion-independent and still complied with the pseudo-first-order kinetics. In addition, two data analysis methods for determination were presented. One was directly based on the reduced absorbance: the other was based on the discoloring kinetic constant. It was found that the latter could perform a rapid (60 s) and reliable (relative standard deviation: 2.6%) determination for high basicity.
Resumo:
We demonstrate high efficiency red organic light-emitting diodes (OLEDs) based on a planar microcavity comprised of a dielectric mirror and a metal Mirror. The microcavity devices emitted red light at a peak wavelength of 610 nm with a full width at half maximum (FWHM) of 25 nm in the forward direction, and an enhancement of about 1.3 factor in electroluminescent (EL) efficiency has been experimentally achieved with respect to the conventional noncavity devices. For microcavity devices with the structure of distributed Bragg reflectors (DBR)/indium-tin-oxide(ITO)/V2O5/N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine(NPB)/4-(dicy-anome-thylene)-2-t-butyl-6(1,1,7,7-tetrame-thyljulolidyl-9-enyl)-4H-pyran(DCJTB):tris(8-hydroxyquinoline) aluminium (Alq(3))/Alq(3)/LiF/Al, the maximum brightness arrived at 37000 cd/m(2) at a current density of 460.0 mA/cm(2), and the current efficiency and power efficiency reach 13.7 cd/A at a current density of 0.23 mA/cm(2) and 13.3 lm/W respectively.
Resumo:
The interfacial tension is measured for Cyanex 302 in heptane and adsorption parameters are calculated according to Gibbs equation and Szyskowski isotherm. The results indicate that Cyanex 302 has a high interfacial activity, allowing easy extraction reaction to take place at the liquid-liquid interface. The extraction kinetics of yttrium(III) with Cyanex 302 in heptane are investigated by a constant interfacial cell with laminar flow. The effects of stirring rate, temperature and specific interfacial area on the extraction rate are discussed. The results suggest that the extraction kinetics is a mixed regime with film diffusion and an aqueous one-step chemical reaction proposed to be the rate-controlling step. Assuming the mass transfer process can be formally treated as a pseudo-first-order reversible reaction with respect to the metal cation, the rate equation for the extraction reaction of yttrium(III) with Cyanex 302 at pH <5 is obtained as follows:R-f = 10(-7.85)[Y(OH)(2)(+)]((a))[H(2)A(2)]((o))(1.00)[H+]((a))(-1.00)Diffusion parameters and rate constants are calculated through approximate solutions of the flux equation.
Resumo:
Under an external alternating current (ac) field, the effective ac dielectric response of graded composites consisting of the graded cylindrical inclusion having complex permittivity profiles has been investigated theoretically. A model that the dielectric function is assumed to be a constant while the conductivity has a power-law dependence on the radial variable r, namely epsilon(i)(r) = A + cr(k)/i omega. is studied and the local analytical potentials of the inclusion and the host regions are derived in terms of hyper-geometric function. In the dilute limit, the effective ac dielectric response is predicted. Meanwhile, we have given the exact proof of the differential effective dipole approximation (DEDA) method, which is suitable to arbitrary graded profiles. Furthermore, we have given the analytical potentials and the effective ac dielectric responses of coated graded cylindrical composites for two cases, case (a) graded core and case (b) graded coated layer, having the graded dielectric profiles, respectively. (c) 2005 Elsevier B.V. All rights reserved.
IDENTIFYING AND MONITORING THE ROLES OF CAVITATION IN HEATING FROM HIGH-INTENSITY FOCUSED ULTRASOUND
Resumo:
For high-intensity focused ultrasound (HIFU) to continue to gain acceptance for cancer treatment it is necessary to understand how the applied ultrasound interacts with gas trapped in the tissue. The presence of bubbles in the target location have been thought to be responsible for shielding the incoming pressure and increasing local heat deposition due to the bubble dynamics. We lack adequate tools for monitoring the cavitation process, due to both limited visualization methods and understanding of the underlying physics. The goal of this project was to elucidate the role of inertial cavitation in HIFU exposures in the hope of applying noise diagnostics to monitor cavitation activity and control HIFU-induced cavitation in a beneficial manner. A number of approaches were taken to understand the relationship between inertial cavitation signals, bubble heating, and bubble shielding in agar-graphite tissue phantoms. Passive cavitation detection (PCD) techniques were employed to detect inertial bubble collapses while the temperature was monitored with an embedded thermocouple. Results indicate that the broadband noise amplitude is correlated to bubble-enhanced heating. Monitoring inertial cavitation at multiple positions throughout the focal region demonstrated that bubble activity increased prefocally as it diminished near the focus. Lowering the HIFU duty cycle had the effect of maintaining a more or less constant cavitation signal, suggesting the shielding effect diminished when the bubbles had a chance to dissolve during the HIFU off-time. Modeling the effect of increasing the ambient temperature showed that bubbles do not collapse as violently at higher temperatures due to increased vapor pressure inside the bubble. Our conclusion is that inertial cavitation heating is less effective at higher temperatures and bubble shielding is involved in shifting energy deposition at the focus. The use of a diagnostic ultrasound imaging system as a PCD array was explored. Filtering out the scattered harmonics from the received RF signals resulted in a spatially- resolved inertial cavitation signal, while the amplitude of the harmonics showed a correlation with temperatures approaching the onset of boiling. The result is a new tool for detecting a broader spectrum of bubble activity and thus enhancing HIFU treatment visualization and feedback.