932 resultados para HEPATOCYTE APOPTOSIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human granulocyte-macrophage colony-stimulating factor (GM-CSF) binds to a high-affinity heterodimeric receptor composed of a specific alpha chain and a common beta chain (beta(c)), which is shared with the receptors for interleukins 3 and 5. Hemopoietic cell survival requires GM-CSF binding this high-affinity receptor. We have recently developed the GM-CSF mutant E21R, which selectively binds to the alpha chain and behaves as a competitive GM-CSF antagonist. We have now examined the role of E21R on the survival of hemopoietic cells and found that E21R causes apoptosis (programmed cell death) of normal and malignant cells directly in the absence of GM-CSF. The direct apoptotic effect of E21R occurred in a dose- and time-dependent manner. Apoptosis by E21R was dependent on cells expressing the high-affinity GM-CSF receptor and could be blocked by GM-CSF. Significantly, apoptosis of the cells occurred even in the presence of the survival factors granulocyte CSF and stem cell factor but was prevented by engagement of beta(c) with interleukin 3. The initiation of apoptosis required phosphorylation, transcriptional activity, and protein synthesis. These findings support a model whereby binding of E21R to the alpha chain leads to apoptosis, while beta(c) plays an important role in cell survival. This model may be applicable to other multimeric cytokine receptors and offers a novel approach for the treatment of human leukemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism by which tolerance is induced via systemic administration of high doses of aqueous antigen has been analyzed by using mice transgenic for a T-cell receptor specific for the influenza virus hemagglutinin (HA) peptide comprising amino acids 126-138. After intravenous injection of 750 (but not 75) micrograms of HA peptide, a state of hyporesponsiveness was rapidly induced. In the thymus, in situ apoptosis in the cortex and at the corticomedullary junction was responsible for a synchronous and massive deletion of CD4+ CD8+ thymocytes. In secondary lymphoid organs, HA-reactive T cells were initially activated but were hyporesponsive at the single cell level. After 3 days, however, those cells were rapidly deleted, at least partially, through an apoptotic process. Therefore, both thymic and peripheral apoptosis, in addition to T-cell receptor desensitization, contribute to high-dose tolerance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All multicellular organisms have mechanisms for killing their own cells, and use physiological cell death for defence, development, homeostasis, and aging. Apoptosis is a morphologically recognizable form of cell death that is implemented by a mechanism that has been conserved throughout evolution from nematode to man. Thus homologs of the genes that implement cell death in nematodes also do so in mammals, but in mammals the process is considerably more complex, involving multiple isoforms of the components of the cell death machinery. In some circumstances this allows independent regulation of pathways that converge upon a common end point. A molecular understanding of this mechanism may allow design of therapies that either enhance or block cell death at will.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate cancer is the second leading cause of male cancer deaths in the United States. Yet, despite a large international effort, little is known about the molecular mechanisms that underlie this devastating disease. Prostate secretory epithelial cells and androgen-dependent prostate carcinomas undergo apoptosis in response to androgen deprivation and, furthermore, most prostate carcinomas become androgen independent and refractory to further therapeutic manipulations during disease progression. Definition of the genetic events that trigger apoptosis in the prostate could provide important insights into critical pathways in normal development as well as elucidate the perturbations of those key pathways in neoplastic transformation. We report the functional definition of a novel genetic locus within human chromosome 10pter-q11 that mediates both in vivo tumor suppression and in vitro apoptosis of prostatic adenocarcinoma cells. A defined fragment of human chromosome 10 was transferred via microcell fusion into a prostate adenocarcinoma cell line. Microcell hybrids containing only the region 10pter-q11 were suppressed for tumorigenicity following injection of microcell hybrids into nude mice. Furthermore, the complemented hybrids undergo programmed cell death in vitro via a mechanism that does not require nuclear localization of p53. These data functionally define a novel genetic locus, designated PAC1, for prostate adenocarcinoma 1, involved in tumor suppression of human prostate carcinoma and furthermore strongly suggest that the cell death pathway can be functionally restored in prostatic adenocarcinoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal transduction initiated by crosslinking of antigen-specific receptors on T- and B-lymphoma cells induces apoptosis. In T-lymphoma cells, such crosslinking results in upregulation of the APO-1 ligand, which then interacts with induced or constitutively expressed APO-1, thereby triggering apoptosis. Here we show that crosslinking the membrane immunoglobulin on human lymphoma cells (Daudi) (that constitutively express APO-1) does not induce synthesis of APO-1 ligand. Further, a noncytotoxic fragment of anti-APO-1 antibody that blocks T-cell-receptor-mediated apoptosis in T-lymphoma cells does not block anti-mu-induced apoptosis. Hence, in B-lymphoma cells, apoptosis induced by signaling via membrane IgM is not mediated by the APO-1 ligand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A genetic approach has been established that combines the advantages of blastocyst complementation with the experimental attributes of the developing lens for the functional analysis of genes governing cellular proliferation, terminal differentiation, and apoptosis. This lens complementation system (LCS) makes use of a mutant mouse strain, aphakia (ak), homozygotes of which fail to develop an ocular lens. We demonstrate that microinjection of wild-type embryonic stem (ES) cells into ak/ak blastocysts produces chimeras with normal ES-cell-derived lenses and that microinjection of Rb-/- ES cells generates an aberrant lens phenotype identical to that obtained through conventional gene targeting methodology. Our determination that a cell autonomous defect underlies the aphakia condition assures that lenses generated through LCS are necessarily ES-cell-derived. LCS provides for the rapid phenotypic analysis of loss-of-function mutations, circumvents the need for germ-line transmission of null alleles, and, most significantly, facilitates the study of essential genes whose inactivation is associated with early lethal phenotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously shown that in neutrophils deprived of granulocyte colony-stimulating factor, apoptosis is preceded by acidification and that the protection against apoptosis conferred on neutrophils by granulocyte colony-stimulating factor is dependent upon delay of this acidification. To test the hypothesis that acidification could be a general feature of apoptosis, we examined intracellular pH changes in another cell line. Jurkat cells, a T-lymphoblastoid line, were induced to undergo apoptosis with anti-Fas IgM, cycloheximide, or exposure to short-wavelength UV light. We found that acidification occurred in response to treatment with these agents and that acidification preceded DNA fragmentation. Jurkat cells were also found to possess an acid endonuclease that is active below pH 6.8, compatible with a possible role for this enzyme in chromatin digestion during apoptosis. Incubation of the cells with the bases imidazole or chloroquine during treatment with anti-Fas antibody or cycloheximide or after UV exposure decreased apoptosis as assessed by nuclear morphology and DNA content. The alkalinizing effect of imidazole and chloroquine was shown by the demonstration that the percentage of cells with an intracellular pH below 6.8 after treatment with anti-Fas antibody, cycloheximide, or UV was diminished in the presence of base as compared with similarly treated cells incubated in the absence of base. We conclude that acidification is an early event in programmed cell death and may be essential for genome destruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In hunting for unknown genes on the human X chromosome, we identified a cDNA in Xq28 encoding a transmembrane protein (SEX) of 1871 amino acids. SEX shares significant homology with the extracellular domain of the receptors encoded by the oncogenes MET, RON, and SEA [hepatocyte growth factor (HGF) receptor family]. Further screenings of cDNA libraries identified three additional sequences closely related to SEX: these were named SEP, OCT, and NOV and were located on human chromosomes 3p, 1, and 3q, respectively. The proteins encoded by these genes contain large cytoplasmic domains characterized by a distinctive highly conserved sequence (SEX domain). Northern blot analysis revealed different expression of the SEX family of genes in fetal tissues, with SEX, OCT, and NOV predominantly expressed in brain, and SEP expressed at highest levels in kidney. In situ hybridization analysis revealed that SEX has a distinctive pattern of expression in the developing nervous system of the mouse, where it is found in postmitotic neurons from the first stages of neuronal differentiation (9.5 day postcoitus). The SEX protein (220 kDa) is glycosylated and exposed at the cell surface. Unlike the receptors of the HGF family, p220SEX, a MET-SEX chimera or a constitutively dimerized TPR-SEX does not show tyrosine kinase activity. These data define a gene family (SEX family) involved in the development of neural and epithelial tissues, which encodes putative receptors with unexpected enzymatic or binding properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The retinoblastoma protein (RB) has been proposed to function as a negative regulator of cell proliferation by complexing with cellular proteins such as the transcription factor E2F. To study the biological consequences of the RB/E2F-1 interaction, point mutants of E2F-1 which fail to bind to RB were isolated by using the yeast two-hybrid system. Sequence analysis revealed that within the minimal 18-amino acid peptide of E2F-1 required for RB binding, five residues, Tyr (position 411), Glu (419), and Asp-Leu-Phe (423-425), are critical. These amino acids are conserved among the known E2F family members. While mutation of any of these five amino acids abolished binding to RB, all mutants retained their full transactivation potential. Expression of mutated E2F-1, when compared with that of wild-type, significantly accelerated entry into S phase and subsequent apoptosis. These results provide direct genetic evidence for the biological significance of the RB/E2F interaction and strongly suggest that the interplay between RB and E2F is critical for proper cell cycle progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The WAF1/CIP1 protein has been identified as a downstream mediator of the tumor suppressor p53 in regulating cell cycle progression through a G1-phase check-point. Recent work has implicated the functional status of p53 as a critical determinant in the apoptotic response of certain cell lines to DNA damaging agents. By using human T-cell leukemia virus type I-transformed lymphoid cell lines that differ in their level and function of wild-type p53, we investigated the induction of WAF1/CIP1 and apoptosis after exposure to Adriamycin, a genotoxic agent. We found that regardless of the p53 status in these cell lines, WAF1/CIP1 RNA was rapidly induced in response to Adriamycin treatment. An elevated level of WAF1/CIP1 protein was observed as well. Additionally, we demonstrated that apoptosis was induced in all cell lines analyzed despite some having functionally inactive p53 protein. Our data suggest that a p53-independent pathway may play a role in the apoptotic response observed in some cell lines after exposure to DNA damaging agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fas, a member of the tumor necrosis factor receptor family, can induce apoptosis when activated by Fas ligand binding or anti-Fas antibody crosslinking. Genetic studies have shown that a defect in Fas-mediated apoptosis resulted in abnormal development and function of the immune system in mice. A point mutation in the cytoplasmic domain of Fas (a single base change from T to A at base 786), replacing isoleucine with asparagine, abolishes the signal transducing property of Fas. Mice homozygous for this mutant allele (lprcg/lprcg mice) develop lymphadenopathy and a lupus-like autoimmune disease. Little is known about the mechanism of signal transduction in Fas-mediated apoptosis. In this study, we used the two-hybrid screen in yeast to isolate a Fas-associated protein factor, FAF1, which specifically interacts with the cytoplasmic domain of wild-type Fas but not the lprcg-mutated Fas protein. This interaction occurs not only in yeast but also in mammalian cells. When transiently expressed in L cells, FAF1 potentiated Fas-induced apoptosis. A search of available DNA and protein sequence data banks did not reveal significant homology between FAF1 and known proteins. Therefore, FAF1 is an unusual protein that binds to the wild type but not the inactive point mutant of Fas. FAF1 potentiates Fas-induced cell killing and is a candidate signal transducing molecule in the regulation of apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many cancers overexpress a member of the bcl-2 family of inhibitors of apoptosis. To determine the role of these proteins in maintaining cancer cell viability, an adenovirus vector that expresses bcl-xs, a functional inhibitor of these proteins, was constructed. Even in the absence of an exogenous apoptotic signal such as x-irradiation, this virus specifically and efficiently kills carcinoma cells arising from multiple organs including breast, colon, stomach, and neuroblasts. In contrast, normal hematopoietic progenitor cells and primitive cells capable of repopulating severe combined immunodeficient mice were refractory to killing by the bcl-xs adenovirus. These results suggest that Bcl-2 family members are required for survival of cancer cells derived from solid tissues. The bcl-xs adenovirus vector may prove useful in killing cancer cells contaminating the bone marrow of patients undergoing autologous bone marrow transplantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyzed the developmental regulation and role of the neurotrophins during metanephric kidney morphogenesis. RNase protection assay revealed the presence of nerve growth factor, neurotrophin 3 (NT-3), and brain-derived neurotrophic factor mRNAs and the regulation of their expression during embryonic development of rat metanephros. NT-3 induced differentiation (neurite outgrowth) and survival (inhibition of apoptosis) of the neuronal precursors in cultured nephrogenic mesenchymes and neuronal differentiation in cultured whole kidneys, whereas NT-4/5, brain-derived neurotrophic factor, and nerve growth factor were without effect. The neurotrophins did not trigger tubular differentiation of isolated nephrogenic cells, which underwent apoptosis when cultured with or without the neurotrophins. NT-3 is thus an inducer of differentiation and a survival factor for renal neuronal cells, but none of the neurotrophins is a morphogen in kidney tubule induction.