861 resultados para HELIOTHIS-VIRESCENS LEPIDOPTERA
Resumo:
The monarch butterfly, Danaus plexippus, is one of Australia's best-known exotic butterflies, being first recorded here in the spring/summer of 1870/1871. However, the source of the original population is unknown. Using historical records we suggest that the most likely source of the founder population was from Vanuatu and/or New Caledonia. Many almost simultaneous 'first records' for the butterfly in Australia suggest that a large, well-distributed population was present when first noticed. While such a population may have developed from a limited number of individuals flying across the Coral Sea, the well documented, very dramatic appearance of large monarch populations in Australia does not appear to fit this model. Rather, we hypothesise that large numbers of monarchs were carried to Australia on cyclonic winds: no fewer that 3 cyclones hit the Queensland coast in early 1870. If one or more of these cyclones tracked from the Vanuatu/New Caledonia chain, then they may have transported monarchs. Once established on the central/northern Queensland coast, natural migration would account for the appearance of butterflies further south.
Resumo:
Elevated jasmonic acid (JA) concentrations in response to herbivory can induce wounded plants to produce defences against herbivores. In laboratory and field experiments we compared the effects of exogenous JA treatment to two closely related cabbage species on the host-searching and oviposition preference of the diamondback moth (DBM), Plutella xylostella. JA-treated Chinese cabbage (Brassica campestris) was less attractive than untreated Chinese cabbage to ovipositing DBM, while JA-treatment of common cabbage (B. oleracea) made plants more attractive than untreated controls for oviposition by this insect. Similar effects were observed when plants of the two species were damaged by DBM larvae. In the absence of insect-feeding, or JA application, Chinese cabbage is much more attractive to DBM than common cabbage. Inducible resistance therefore appears to occur in a more susceptible plant and induced susceptibility appears to occur in a more resistant plant, suggesting a possible balance mechanism between constitutive and inducible defences to a specialist herbivore.
Resumo:
Maximizing the contribution of endemic natural enemies to integrated pest management (IPM) programs requires a detailed knowledge of their interactions with the target pest. This experimental field study evaluated the impact of the endemic natural enemy complex of Plutella xylostella (L.) (Lepidoptera: Yponomeutidae) on pest populations in commercial cabbage crops in southeastern Queensland, Australia. Management data were used to score pest management practices at experimental sites on independent Brassica farms practicing a range of pest management strategies, and mechanical methods of natural enemy exclusion were used to assess the impact of natural enemies on introduced cohorts of P. xylostella at each site. Natural enemy impact was greatest at sites adopting IPM and least at sites practicing conventional pest management strategies. At IPM sites, the contribution of natural enemies to P. xylostella mortality permitted the cultivation of marketable crops with no yield loss but with a substantial reduction in insecticide inputs. Three species of larval parasitoids (Diadegma semiclausum Hellen [Hymenoptera: Ichneumonidae], Apanteles ippeus Nixon [Hymenoptera: Braconidae], and Oomyzus sokolowskii Kurdjumov [Hymenoptera: Eulophidae]) and one species of pupal parasitoid Diadromus collaris Gravenhorst (Hymenoptera: Ichneumonidae) attacked immature P. xylostella. The most abundant groups of predatory arthropods caught in pitfall traps were Araneae (Lycosidae) > Coleoptera (Carabidae, Coccinelidae, Staphylinidae) > Neuroptera (Chrysopidae) > Formicidae, whereas on crop foliage Araneae (Clubionidae, Oxyopidae) > Coleoptera (Coccinelidae) > Neuroptera (Chrysopidae) were most common. The abundance and diversity of natural enemies was greatest at sites that adopted IPM, correlating greater P. xylostella mortality at these sites. The efficacy of the natural enemy complex to pest mortality under different pest management regimes and appropriate strategies to optimize this important natural resource are discussed.
Resumo:
Baculoviruses are a group of viruses that infect invertebrates and that have been used worldwide as a biopesticide against several insect pests of the Order Lepidoptera. In Brazil, the baculovirus Spodoptera frugiperda multicapsid nucleopolyhedrovirus (SfMNPV, Baculoviridae) has been used experimentally to control S. frugiperda (Lepidoptera: Noctuidae), an important insect pest of corn (maize) fields and other crops. Baculoviruses can be produced either in insect larvae or in cell culture bioreactors. A major limitation to the in vitro production of baculoviruses is the rapid generation of mutants when the virus undergoes passages in cell culture. In order to evaluate the potential of in vitro methods of producing SfMNPV on a large-scale, we have multiplied a Brazilian isolate of this virus in cell culture. Extensive formation of few polyhedra mutants was observed after only two passages in Sf9 cells.
Resumo:
During oviposition, the parasitoid wasp Cotesia congregata injects polydnavirus, venom, and parasitoid eggs into larvae of its lepidopteran host.. the tobacco hornworm, Manduca sexta. Polydnaviruses (PDVs) suppress the immune system of the host and allow the juvenile parasitoids to develop without being encapsulated by host hemocytes mobilized by the immune system. Previous work identified a gene in the Cotesia rubecula PDV (CrV1) that is responsible for depolymerization of actin in hemocytes of the host Pieris rapae during a narrow temporal window from 4 to 8 h post-parasitization. Its expression appears temporally correlated with hemocyte dysfunction. After this time, the hemocytes recover, and encapsulation is then inhibited by other mechanism(s). In contrast, in parasitized tobacco hornworm larvae this type of inactivation in hemocytes of parasitized M. sexta larvae leads to irreversible cellular disruption. We have characterized the temporal pattern of expression of the CrV1-homolog from the C. congregata PDV in host fat body and hemocytes using Northern blots, and localized the protein in host hemocytes with polyclonal antibodies to CrV1 protein produced in P. rapae in response to expression of the CrV1 protein. Host hemocytes stained with FITC-labeled phalloidin, which binds to filamentous actin, were used to observe hemocyte disruption in parasitized and virus-injected hosts and a comparison was made to hemocytes of nonparasitized control larvae. At 24 h post-parasitization host hemocytes were significantly altered compared to those of nonparasitized larvae. Hemocytes front newly parasitized hosts displayed blebbing, inhibition of spreading and adhesion, and overall cell disruption. A CrV1-homolog gene product was localized in host hemocytes using polyclonal CrV1 antibodies, suggesting that CrV1-like gene products of C. congregata's bracovirus are responsible for the impaired immune response of the host. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Wasps of the genus Trichogramma parasitise the eggs of Lepidoptera. They may deposit one or many eggs in each host. Survival is high at low density but reaches a plateau as density increases. To reveal the mechanism by which excess larvae die we chose a lepidopteran host that has flattened, transparent eggs and used video microscopy to record novel feeding behaviours and interactions of larval Trichogramma carverae (Oatman and Pinto) at different densities. Single larvae show a rapid food ingestion phase, followed by a period of extensive saliva release. Ultimately the host egg is completely consumed. The larva then extracts excess moisture from the egg, providing a dry environment for pupation. When multiple larvae are present, the initial scramble for food results in the larvae consuming all of the egg contents early in development. All larvae survive if there is sufficient food for all to reach a threshold developmental stage. If not, physical proximity results in attack and consumption of others, continuing until the surviving larvae reach the threshold stage beyond which attacks seem to be no longer effective. The number of larvae remaining at the end of rapid ingestion dictates how many will survive to emerge as adults.
Resumo:
Long-term forecasts of pest pressure are central to the effective management of many agricultural insect pests. In the eastern cropping regions of Australia, serious infestations of Helicoverpa punctigera (Wallengren) and H. armigera (Hübner)(Lepidoptera: Noctuidae) are experienced annually. Regression analyses of a long series of light-trap catches of adult moths were used to describe the seasonal dynamics of both species. The size of the spring generation in eastern cropping zones could be related to rainfall in putative source areas in inland Australia. Subsequent generations could be related to the abundance of various crops in agricultural areas, rainfall and the magnitude of the spring population peak. As rainfall figured prominently as a predictor variable, and can itself be predicted using the Southern Oscillation Index (SOI), trap catches were also related to this variable. The geographic distribution of each species was modelled in relation to climate and CLIMEX was used to predict temporal variation in abundance at given putative source sites in inland Australia using historical meteorological data. These predictions were then correlated with subsequent pest abundance data in a major cropping region. The regression-based and bioclimatic-based approaches to predicting pest abundance are compared and their utility in predicting and interpreting pest dynamics are discussed.
Resumo:
We investigated the rates of egg and larval parasitism in transgenic and non-transgenic, conventional cottons. Sentinel eggs and larvae of the cotton bollworm, CBW, Helicoverpa armigera Hubner, were released and collected at regular intervals across the cotton growing season, and the relationship between parasitism and different cotton cultivars determined. Egg and larval parasitism were significantly lower in the transgenic cottons than in the non-transgenic conventional cottons. The egg parasitoid recovered was Trichogramma confusum Viggiani and the predominant larval parasitoids were Campoletis chlorideae Uchida and Meteorus pulchriconis (Wesmael). Our studies indicate a potential negative interaction between transgenic cottons and parasitoids of CBW but need to be interpreted with caution because no within-year replication was used and treatments were not spatially randomised across years.
Resumo:
Serial passaging of wild-type Helicoverpa armigera, single-nucleocapsid (HaSNPV) in H. zea (HzAMI) illsect Cell Cultures results ill rapid selection for the few polyhedra (FP) phenotype. A unique HaSNPV mutant (ppC19) was isolated through plaque purification that exhibited a partial many polyhedra (MP) and FP phenotype. Oil serial passaging in suspension cell cultures, ppC19 produced fivefold more polyhedra than a typical FP mutant (FP8AS) but threefold less polyhedra than the wild-type virus. Most importantly, the polyhedra of ppC19 exhibited MP-like virion occlusion. Furthermore, ppC19 produced the same amount of budded virus (BV) as the FP mutant, which was fivefold higher than that of the wild-type virus. This selective advantage was likely to explain its relative stability in polyhedra production for six passages when compared with the wild-type Virus. However, subsequent passaging of ppC19 resulted in a steel) decline in both BV and polyhedra yields, which was also experienced by FP8AS and the wild-type virus Lit high passage numbers. Genomic deoxyribonueleic Licid profiling of the latter suggested that defective interfering particles (DIPS) were implicated in this phenomenon and represented another Undesirable mutation during serial passaging of HaSNPV Hence, a strategy to isolate HaSNPV Clones that exhibited MP-like polyhedra production but FP-like BV production, coupled with low multiplicities of infection during scale-up to avoid accumulation of DIPS, could prove commerically invaluable.
Resumo:
When investigating strategies for Helicoverpa armigera (Hubner) control, it is important to understand oviposition behaviour. Cotton (Gossypium hirsutum) was sown into standing wheat (Triticum astivum L.) stubble in a closed arena to investigate the effect of stubble on H. armigera moth behaviour and oviposition. Infrared cameras were used to track moths and determine whether stubble acted as a physical barrier or provided camouflage to cotton plants, thereby reducing oviposition. Searching activity was observed to peak shortly before dawn (03:00 and 04:00 h) and remained high until just after dawn (4 h window). Moths spent more time resting on cotton plants than spiralling above them, and the least time flying across the arena. While female moths spent more time searching for cotton plants growing in wheat stubble, the difference in oviposition was not significant. As similar numbers of eggs were laid on cotton plants with stubble (3.5/plant SE +/- 0.87) and without stubble (2.5/plant SE +/- 0.91), wheat stubble does not appear to provide camouflage to cotton plants. There was no significant difference in the location of eggs deposited on cotton plants with and without stubble, although more eggs were laid on the tops of cotton leaves in wheat stubble. As the spatial and temporal distribution of eggs laid on the cotton plant is a crucial component of population stability, eggs laid on the upper side of leaves on cotton plants may be more prone to fatalities caused by environmental factors such as wind and rain. Therefore, although stubble did not influence the number of eggs laid, it did affect their distribution on the plant, which may result in increased mortality of eggs on cotton plants sown into standing wheat stubble.
Resumo:
Various factors can influence the population dynamics of phytophages post introduction, of which climate is fundamental. Here we present an approach, using a mechanistic modelling package (CLIMEX), that at least enables one to make predictions of likely dynamics based on climate alone. As biological control programs will have minimal funding for basic work (particularly on population dynamics), we show how predictions can be made using a species geographical distribution, relative abundance across its range, seasonal phenology and laboratory rearing data. Many of these data sets are more likely to be available than long-term population data, and some can be incorporated into the exploratory phase of a biocontrol program. Although models are likely to be more robust the more information is available, useful models can be developed using information on species distribution alone. The fitted model estimates a species average response to climate, and can be used to predict likely geographical distribution if introduced, where the agent is likely to be more abundant (i.e. good locations) and more importantly for interpretation of release success, the likely variation in abundance over time due to intra- and inter-year climate variability. The latter will be useful in predicting both the seasonal and long-term impacts of the potential biocontrol agent on the target weed. We believe this tool may not only aid in the agent selection process, but also in the design of release strategies, and for interpretation of post-introduction dynamics and impacts. More importantly we are making testable predictions. If biological control is to become more of a science making and testing such hypothesis will be a key component.
Resumo:
Predatory insects and spiders are key elements of integrated pest management (IPM) programmes in agricultural crops such as cotton. Management decisions in IPM programmes should to be based on a reliable and efficient method for counting both predators and pests. Knowledge of the temporal constraints that influence sampling is required because arthropod abundance estimates are likely to vary over a growing season and within a day. Few studies have adequately quantified this effect using the beat sheet, a potentially important sampling method. We compared the commonly used methods of suction and visual sampling to the beat sheet, with reference to an absolute cage clamp method for determining the abundance of various arthropod taxa over 5 weeks. There were significantly more entomophagous arthropods recorded using the beat sheet and cage clamp methods than by using suction or visual sampling, and these differences were more pronounced as the plants grew. In a second trial, relative estimates of entomophagous and phytophagous arthropod abundance were made using beat sheet samples collected over a day. Beat sheet estimates of the abundance of only eight of the 43 taxa examined were found to vary significantly over a day. Beat sheet sampling is recommended in further studies of arthropod abundance in cotton, but researchers and pest management advisors should bear in mind the time of season and time of day effects.
Resumo:
The response of generalist egg parasitoids to alternative natural hosts that are present simultaneously is not well known. We investigated the behavior of Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) in relation to two field hosts Helicoverpa armigera Hubner and Spodoptera litura Fabricius, in choice and no choice tests. We quantified the effects of natal host species and post-emergence adult age on the oviposition preference of the parasitoids. H. armigera eggs were consistently preferred over S. litura eggs, regardless of the natal host and adult age. When only S. litura eggs were available as hosts, they were parasitized at statistically similar rates to H. armigera eggs (average of 17 +/- 2.7 vs. 13 +/- 3.0, H. armigera to S. litura). The adult lifespan and lifetime fecundity of T. pretiosum were variable but were affected by natal host species and/or host species to which they were exposed. Mean lifespan and fecundity of parasitoids that had developed in H. armigera eggs and were exposed to H. armigera eggs for oviposition were 13.9 +/- 1.8 days and 98.7 +/- 11.0 adult offspring. By contrast, those that developed in S. litura eggs and were exposed to S. litura eggs for oviposition lived for 7 +/- 0.9 days and produced 53.8 +/- 8.0 adult offspring. The ovigeny index (OI) was significantly lower in the parasitoids exposed to H. armigera eggs than in those exposed to S. litura eggs, regardless of the natal host, indicating that H. armigera eggs sustain the adult parasitoids better than S. litura eggs. These results are used to predict parasitoid behavior in the field when both hosts are available. (c) 2006 Elsevier Inc. All rights reserved.