910 resultados para H- NMR
Resumo:
Biochemistry. 2008 Oct 14;47(41):10852-62. doi: 10.1021/bi801375q
Resumo:
J Biol Inorg Chem (2006) 11: 307–315 DOI 10.1007/s00775-005-0077-2
Resumo:
Biochemistry, 2004, 43 (46), pp 14566–14576 DOI: 10.1021/bi0485833
Resumo:
J Biol Inorg Chem (2003) 8: 777–786 DOI 10.1007/s00775-003-0479-y
Resumo:
Dissertação para obtenção do Grau de Doutor em Bioquímica, ramo de Biotecnologia
Resumo:
Dissertation to obtain the Master Degree in Biotechnology
Resumo:
Dissertação para obtenção do Grau de Mestre em Mestrado em Conservação e Restauro, especialização em Ciências da Conservação
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau Mestre em Biotecnologia
Resumo:
Dissertação para obtenção do Grau de Doutor em Ciência e Engenharia de Materiais
Resumo:
Dissertação para obtenção do Grau de Doutor em Química Sustentável
Resumo:
A thesis to obtain a Master degree in Structural and Functional Biochemistry
Resumo:
A thesis submitted for the Degree of Master in Medical microbiology
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Using a green methodology, 17 different poly(2-oxazolines) were synthesized starting from four different oxazoline monomers. The polymerization reactions were conducted in supercritical carbon dioxide under a cationic ring-opening polymerization (CROP) mechanism using boron trifluoride diethyl etherate as the catalyst. The obtained living polymers were then end-capped with different types of amines, in order to confer them antimicrobial activity. For comparison, four polyoxazolines were end-capped with water, and by their hydrolysis the linear poly(ethyleneimine) (LPEI) was also produced. After functionalization the obtained polymers were isolated, purified and characterized by standard techniques (FT-IR, NMR, MALDI-TOF and GPC). The synthesized poly(2-oxazolines) revealed an unusual intrinsic blue photoluminescence. High concentration of carbonyl groups in the polymer backbone is appointed as a key structural factor for the presence of fluorescence and enlarges polyoxazolines’ potential applications. Microbiological assays were also performed in order to evaluate their antimicrobial profile against gram-positive Staphylococcus aureus NCTC8325-4 and gram-negative Escherichia coli AB1157 strains, two well known and difficult to control pathogens. The minimum inhibitory concentrations (MIC)s and killing rates of three synthesized polymers against both strains were determined. The end-capping with N,N-dimethyldodecylamine of living poly(2- methyl-2-oxazoline) and poly(bisoxazoline) led to materials with higher MIC values but fast killing rates (less than 5 minutes to achieve 100% killing for both bacterial species) than LPEI, a polymer which had a lower MIC value, but took a longer time to kill both E.coli and S.aureus cells. LPEI achieved 100% killing after 45 minutes in contact with E. coli and after 4 hours in contact with S.aureus. Such huge differences in the biocidal behavior of the different polymers can possibly underlie different mechanisms of action. In the future, studies to elucidate the obtained data will be performed to better understand the killing mechanisms of the polymers through the use of microbial cell biology techniques.