932 resultados para Gut enzymes
Resumo:
Erythrocytes transport oxygen to tissues and exercise-induced oxidative stress increases erythrocyte damage and turnover. Increased use of antioxidant supplements may alter protective erythrocyte antioxidant mechanisms during training. Aim of study: To examine the effects of antioxidant supplementation, (alpha-lipoic acid and a-tocopherol) and/or endurance training on the antioxidant defenses of erythrocytes. Methods: Young male Wistar rats were. assigned to (1) sedentary; (2) sedentary and antioxidant-supplemented; (3) endurance-trained; or (4) endurance-trained and antioxidant-supplemented groups for 14 weeks. Erythrocyte superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) activities, and plasma malondialdehyde (MDA) were then measured. Results: Antioxidant supplementation had no significant effect (p > 0.05) on activities of antioxidant enzymes in sedentary animals. Similarly, endurance training alone also bad no effect (p > 0.05). GPX (125.9 2.8 vs. 121.5 3.0 U.gHb(-1), p < 0.05) and CAT (6.1 0.2 vs. 5.6 0.2 U.mgHb-1, p < 0.05) activities were increased in supplemented trained animals compared to non-supplemented sedentary animals whereas SOD (61.8 4.3 vs. 52.0 5.2 U.mgHb(-1), p < 0.05) activity was decreased. Plasma MDA was not different among groups (p > 0.05). Conclusions: In a rat model, the combination of exercise training and antioxidant supplementation increased antioxidant enzyme activities (GPX, CAT) compared with each individual intervention.
Resumo:
Aims: An early adenocarcinoma of the ascending colon was confined to a mass of gut-associated lymphoid tissue (GALT). The first description of an adenocarcinoma of colon differentiating as dome epithelium is presented. Methods and results: A plaque-like carcinoma was identified opposite the ileocaecal valve in an asymptomatic 56-year-old man with a family history of colorectal cancer. Malignant epithelium was confined to a mass of GALT filling but limited to the submucosa, Characterization of the neoplasm was undertaken by means of mucin histochemistry, immunohistochemistry, electron microscopy and assessment of DNA microsatellite instability status. The malignant epithelium comprised well differentiated columnar cells with a microvillous brush border and expressing MUC1, but no goblet cells or expression of MUC2. The demonstration of focal clusters of intraepithelial B-lymphocytes supported the presence of functioning M-cells within the malignant neoplasm. The cancer was DNA microsatellite stable despite the finding of tumour infiltrating lymphocytes. Conclusions: There is evidence for the origin of colorectal neoplasia from dome epithelium in both experimental models and microreconstruction studies of early adenomas in nonpolypotic human colorectal mucose, It is suggested that the lymphocyte-rich subset of colorectal cancer that expresses MUC1 but not MUC2 may be differentiating as dome epithelium of gut-associated lymphoid tissue.
Resumo:
Dimethylsulfide (DMS) dehydrogenase catalyses the oxidation of DMS to dimethylsulfoxide. The purified enzyme has three subunits of Mr = 94, 38 and 32 kDa and has an optical spectrum dominated by a b-type cytochrome. The metal ion and nucleotide analysis revealed 0.5 g-atom Mo, 9.8 g-atom Fe and 1.96 mol GMP per tool of enzyme. Taken together, these data indicate that DMS dehydrogenase contains a bis(MGD)Mo cofactor. A comparison of the Nterminal amino acid sequence of DMS dehydrogenase revealed that the Mo-containing ct-subunit was most closely related to the c~-subunits of nitrate reductase (NarG) and selenate reductase (SerA). Similarly, the [~-subunit of DMS dehydrogenase was most closely related to the [3-subunits of nitrate reductase (NarH) and selenate reductase (SerB). Variable temperature X-band EPR spectra (120-2K) of 'as isolated' DMS dehydrogenase showed resonances arising from multiple redox centres, Mo(V), [3Fe-4S] +, [4Fe-4S] ÷. A pH dependent EPR study of the Mo(V) centre in lH20 and 2H20 reveals the presence of three Mo(V) species in equilibrium, Mo(V)-OH2, Mo(V)-X and Mo(V)-OH. Between pH6 and 8.2 the dominant species is Mo(V)-OH2 and Mo(V)-X is a minor component. X is probably the anion, chloride. Comparison of the rhombicity and anisotropy parameters for the Mo(V) species in DMS dehydrogenase with other Mo(V) centres in metalloproteins showed that it was most similar to the low pH nitrite spectrum of E. coli nitrate reductase (NarGHI). The spin Hamiltonian parameters (2.0158, 1.8870, 1.8620) for the [4Fe-4S] + cluster suggests the presence of histidine (N) coordination to iron in this cluster. It is suggested that this unusual [Fe-S] cluster may be associated with a histidine-cysteine rich sequence at the N-terminus of the ct-subunit of DMS dehydrogenase.