832 resultados para Guarantees
Resumo:
La ricerca affronta la questione della punizione nella prospettiva del diritto costituzionale nazionale integrata con quella del diritto europeo dei diritti dell’uomo. Nella Parte I è sostenuta la tesi secondo cui la trasformazione della Costituzione penale avviata sotto l’influsso della giurisprudenza CEDU rappresenta complessivamente un avanzamento nel processo di costituzionalizzazione del potere punitivo. Questa conclusione è supportata attraverso un confronto della filosofia costituzionale classica sulla punizione con i diversi approcci interpretativi alla Costituzione penale sviluppati durante il XX secolo (approcci tradizionale, costituzionalistico ed EDU). Nella Parte II è invece sostenuta la tesi secondo cui, nonostante gli effetti positivi dell’armonizzazione sovranazionale, lo statuto costituzionale della punizione dovrebbe comunque rimanere formalmente autonomo dal diritto EDU. Non solo, infatti, nessun paradigma dei rapporti interordinamentali finora sviluppato può giustificarne un’integrazione totale, ma essa rischierebbe anche di diminuire la normatività dell’aspetto sociale della Costituzione penale, già ipocostituzionalizzato rispetto a quello liberale. Nella Conclusione sono quindi sviluppati gli elementi fondamentali di un approccio interpretativo alternativo alla Costituzione penale che risponda meglio di quelli esistenti alle esigenze sia di garantire la massima costituzionalizzazione della punizione sia di facilitare l’integrazione sovranazionale. In base a un simile approccio costituzionalmente fondato, sostanzialista, rights-based e inclusivo di tutte le ideologie costituenti, la Costituzione potrebbe essere letta nel senso di prevedere un modello di disciplina unitario per tutte le forme di esercizio del potere punitivo (salvo quello disciplinare, distinguibile sotto l’aspetto istituzionale) caratterizzato da: una riserva di legge a intensità variabile; uno scrutinio stretto della Corte sulla giustificabilità costituzionale della pena; l’estensione dell’ambito di applicazione dei principi di colpevolezza e rieducazione; un pieno sviluppo degli aspetti di garanzia collettiva dei classici principi costituzionalpenalistici (obblighi di tutela penale e garanzia dell’effettiva collocazione della pena in capo al soggetto colpevole), nonché derivabili dall’art. 3 Cost. (proporzionalità della pena alle condizioni materiali del soggetto punito).
Resumo:
Deep Neural Networks (DNNs) have revolutionized a wide range of applications beyond traditional machine learning and artificial intelligence fields, e.g., computer vision, healthcare, natural language processing and others. At the same time, edge devices have become central in our society, generating an unprecedented amount of data which could be used to train data-hungry models such as DNNs. However, the potentially sensitive or confidential nature of gathered data poses privacy concerns when storing and processing them in centralized locations. To this purpose, decentralized learning decouples model training from the need of directly accessing raw data, by alternating on-device training and periodic communications. The ability of distilling knowledge from decentralized data, however, comes at the cost of facing more challenging learning settings, such as coping with heterogeneous hardware and network connectivity, statistical diversity of data, and ensuring verifiable privacy guarantees. This Thesis proposes an extensive overview of decentralized learning literature, including a novel taxonomy and a detailed description of the most relevant system-level contributions in the related literature for privacy, communication efficiency, data and system heterogeneity, and poisoning defense. Next, this Thesis presents the design of an original solution to tackle communication efficiency and system heterogeneity, and empirically evaluates it on federated settings. For communication efficiency, an original method, specifically designed for Convolutional Neural Networks, is also described and evaluated against the state-of-the-art. Furthermore, this Thesis provides an in-depth review of recently proposed methods to tackle the performance degradation introduced by data heterogeneity, followed by empirical evaluations on challenging data distributions, highlighting strengths and possible weaknesses of the considered solutions. Finally, this Thesis presents a novel perspective on the usage of Knowledge Distillation as a mean for optimizing decentralized learning systems in settings characterized by data heterogeneity or system heterogeneity. Our vision on relevant future research directions close the manuscript.
Resumo:
This thesis deals with efficient solution of optimization problems of practical interest. The first part of the thesis deals with bin packing problems. The bin packing problem (BPP) is one of the oldest and most fundamental combinatorial optimiza- tion problems. The bin packing problem and its generalizations arise often in real-world ap- plications, from manufacturing industry, logistics and transportation of goods, and scheduling. After an introductory chapter, I will present two applications of two of the most natural extensions of the bin packing: Chapter 2 will be dedicated to an application of bin packing in two dimension to a problem of scheduling a set of computational tasks on a computer cluster, while Chapter 3 deals with the generalization of BPP in three dimensions that arise frequently in logistic and transportation, often com- plemented with additional constraints on the placement of items and characteristics of the solution, like, for example, guarantees on the stability of the items, to avoid potential damage to the transported goods, on the distribution of the total weight of the bins, and on compatibility with loading and unloading operations. The second part of the thesis, and in particular Chapter 4 considers the Trans- mission Expansion Problem (TEP), where an electrical transmission grid must be expanded so as to satisfy future energy demand at the minimum cost, while main- taining some guarantees of robustness to potential line failures. These problems are gaining importance in a world where a shift towards renewable energy can impose a significant geographical reallocation of generation capacities, resulting in the ne- cessity of expanding current power transmission grids.
Resumo:
Embedded systems are increasingly integral to daily life, improving and facilitating the efficiency of modern Cyber-Physical Systems which provide access to sensor data, and actuators. As modern architectures become increasingly complex and heterogeneous, their optimization becomes a challenging task. Additionally, ensuring platform security is important to avoid harm to individuals and assets. This study primarily addresses challenges in contemporary Embedded Systems, focusing on platform optimization and security enforcement. The initial section of this study delves into the application of machine learning methods to efficiently determine the optimal number of cores for a parallel RISC-V cluster to minimize energy consumption using static source code analysis. Results demonstrate that automated platform configuration is not only viable but also that there is a moderate performance trade-off when relying solely on static features. The second part focuses on addressing the problem of heterogeneous device mapping, which involves assigning tasks to the most suitable computational device in a heterogeneous platform for optimal runtime. The contribution of this section lies in the introduction of novel pre-processing techniques, along with a training framework called Siamese Networks, that enhances the classification performance of DeepLLVM, an advanced approach for task mapping. Importantly, these proposed approaches are independent from the specific deep-learning model used. Finally, this research work focuses on addressing issues concerning the binary exploitation of software running in modern Embedded Systems. It proposes an architecture to implement Control-Flow Integrity in embedded platforms with a Root-of-Trust, aiming to enhance security guarantees with limited hardware modifications. The approach involves enhancing the architecture of a modern RISC-V platform for autonomous vehicles by implementing a side-channel communication mechanism that relays control-flow changes executed by the process running on the host core to the Root-of-Trust. This approach has limited impact on performance and it is effective in enhancing the security of embedded platforms.
Resumo:
Even without formal guarantees of their effectiveness, adversarial attacks against Machine Learning models frequently fool new defenses. We identify six key asymmetries that contribute to this phenomenon and formulate four guidelines to build future-proof defenses by preventing such asymmetries. We also prove that attacking a classifier is NP-complete, while defending from such attacks is Sigma_2^P-complete. We then introduce Counter-Attack (CA), an asymmetry-free metadefense that determines whether a model is robust on a given input by estimating its distance from the decision boundary. Under specific assumptions CA can provide theoretical detection guarantees. Additionally, we prove that while CA is NP-complete, fooling CA is Sigma_2^P-complete. Even when using heuristic relaxations, we show that our method can reliably identify non-robust points. As part of our experimental evaluation, we introduce UG100, a new dataset obtained by applying a provably optimal attack to six limited-scale networks (three for MNIST and three for CIFAR10), each trained in three different manners.
Resumo:
In the recent years, autonomous aerial vehicles gained large popularity in a variety of applications in the field of automation. To accomplish various and challenging tasks the capability of generating trajectories has assumed a key role. As higher performances are sought, traditional, flatness-based trajectory generation schemes present their limitations. In these approaches the highly nonlinear dynamics of the quadrotor is, indeed, neglected. Therefore, strategies based on optimal control principles turn out to be beneficial, since in the trajectory generation process they allow the control unit to best exploit the actual dynamics, and enable the drone to perform quite aggressive maneuvers. This dissertation is then concerned with the development of an optimal control technique to generate trajectories for autonomous drones. The algorithm adopted to this end is a second-order iterative method working directly in continuous-time, which, under proper initialization, guarantees quadratic convergence to a locally optimal trajectory. At each iteration a quadratic approximation of the cost functional is minimized and a decreasing direction is then obtained as a linear-affine control law, after solving a differential Riccati equation. The algorithm has been implemented and its effectiveness has been tested on the vectored-thrust dynamical model of a quadrotor in a realistic simulative setup.
Resumo:
The work presented in this thesis aims to contribute to innovation in the Urban Air Mobility and Delivery sector and represents a solid starting point for air logistics and its future scenarios. The dissertation focuses on modeling, simulation, and control of a formation of multirotor aircraft for cooperative load transportation, with particular attention to environmental sustainability. First, a simulation and test environment is developed to assess technologies for suspended load stabilization. Starting from the mathematical model of two identical multirotors, formation-flight-keeping and collision-avoidance algorithms are analyzed. This approach guarantees both the safety of the vehicles within the formation and that of the payload, which may be made of people in the very near future. Afterwards, a mathematical model for the suspended load is implemented, as well as an active controller for its stabilization. The key focus of this part is represented by both analysis and control of payload oscillatory motion, by thoroughly investigating load kinetic energy decay. At this point, several test cases were introduced, in order to understand which strategy is the most effective and safe in terms of future applications in the field of air logistics.