967 resultados para Growth-factor Receptor
Resumo:
The therapeutic application of growth factors to human disease has become closer to reality with the advent of faster means of synthesizing these molecules and novel drug delivery strategies. Epidermal growth factor (EGF) belongs to a large family of molecules with the ability to modulate growth. Purified extracts of EGF have been used clinically to modulate gastrointestinal secretion of hormones and accelerate healing. EGF is also reported to have both vascular smooth muscle contractile and relaxing activity Cardiovascular studies were performed with the bioactive 48-amino acid fragment of human EGF in rodents and primates to determine the effects of EGF on blood pressure and heart rate in conscious animals. Intravenous infusion of EGF induced an initial pressor response in rats followed by a prolonged decrease in blood pressure. In contrast, in monkeys, EGF had dose-related blood pressure-lowering effects only; significant hypotension was observed at doses ranging from 3 to 300 microg/kg i.v. Hypotension was associated with modest tachycardia in both species. To our knowledge, this is the first report of hemodynamic effects of EGF in primates, and it clearly documents that the mitogenic role of growth factors such as EGF is but one aspect of their physiology.
Resumo:
Baculovirus inhibitors of apoptosis (IAPs) act in insect cells to prevent cell death. Here we describe three mammalian homologs of IAP, MIHA, MIHB, and MIHC, and a Drosophila IAP homolog, DIHA. Each protein bears three baculovirus IAP repeats and an N-terminal ring finger motif. Apoptosis mediated by interleukin 1beta converting enzyme (ICE), which can be inhibited by Orgyia pseudotsugata nuclear polyhedrosis virus IAP (OpIAP) and cowpox virus crmA, was also inhibited by MIHA and MIHB. As MIHB and MIHC were able to bind to the tumor necrosis factor receptor-associated factors TRAF1 and TRAF2 in yeast two-hybrid assays, these results suggest that IAP proteins that inhibit apoptosis may do so by regulating signals required for activation of ICE-like proteases.
Resumo:
In tuberculosis, Mycobacterium tuberculosis (MTB)-stimulated T-cell responses are depressed transiently, whereas antibody levels are increased. Lymphoproliferative responses of peripheral blood mononuclear cells (PBMCs) from Pakistani tuberculosis (TB) patients to both mycobacterial and candidal antigens were suppressed by approximately 50% when compared to healthy purified protein derivative (PPD)-positive household contacts. Production of interferon gamma (IFN-gamma) in response to PPD also was depressed by 78%. Stimulation with PPD and the 30-kDa alpha antigen of MTB (30-kDa antigen) induced greater secretion of transforming growth factor beta (TGF-beta), but not interleukin 10 (IL-10) or tumor necrosis factor alpha (TNF-alpha), by PBMCs from TB patients compared to healthy contacts. The degree of suppression correlated with the duration of treatment; patients treated for <1 month had significantly lower T-cell blastogenesis and IFN-gamma production and higher levels of TGF-beta than did patients treated for >1 month. Neutralizing antibody to TGF-beta normalized lymphocyte proliferation in response to PPD, partially restored blastogenesis to candidal antigen, and significantly increased PPD-stimulated production of IFN-gamma in TB patients but not in contacts. Neutralizing antibody to IL-10 augmented, but did not normalize, T-cell responses to both PPD and candida in TB patients and candidal antigen in contacts. TGF-beta, produced in response to MTB antigens, therefore plays a prominent role in down-regulating potentially protective host effector mechanisms and looms as an important mediator of immunosuppression in TB.
Resumo:
Like human gliomas, the rat 9L gliosarcoma secretes the immunosuppressive transforming growth factor beta (TGF-beta). Using the 9L model, we tested our hypothesis that genetic modification of glioma cells to block TGF-beta expression may enhance their immunogenicity and make them more suitable for active tumor immunotherapy. Subcutaneous immunizations of tumor-bearing animals with 9L cells genetically modified to inhibit TGF-beta expression with an antisense plasmid vector resulted in a significantly higher number of animals surviving for 12 weeks (11/11, 100%) compared to immunizations with control vector-modified 9L cells (2/15, 13%) or 9L cells transduced with an interleukin 2 retroviral vector (3/10, 30%) (P < 0.001 for both comparisons). Histologic evaluation of implantation sites 12 weeks after treatment revealed no evidence of residual tumor. In vitro tumor cytotoxicity assays with lymph node effector cells revealed a 3- to 4-fold increase in lytic activity for the animals immunized with TGF-beta antisense-modified tumor cells compared to immunizations with control vector or interleukin 2 gene-modified tumor cells. These results indicate that inhibition of TGF-beta expression significantly enhances tumor-cell immunogenicity and supports future clinical evaluation of TGF-beta antisense gene therapy for TGF-beta-expressing tumors.
Resumo:
Expression of mitogenic basic fibroblast growth factor (bFGF) in the central nervous system is inhibited by direct cell contact and is implicated in reactive and neoplastic transformation of astrocytes. The molecular mechanisms controlling expression of bFGF were examined in cultures of human astrocytes. Cell-density-dependent depletion of bFGF mRNA levels parallels changes in bFGF gene protein. Regulation of transcription of a bFGF luciferase reporter gene containing an upstream region (bp -1800 to +314) of the bFGF gene promoter mimicks the density-dependent regulation of the endogenous bFGF gene in transfected astrocytes. Deletion analysis has identified a fragment (bp -650 to -513) and sequences further downstream (bp -274 to +314) as the regions required for the regulation of bFGF gene activity by cell density. Unlike in astrocytes, changing the cell density of glioma cell cultures does not affect the levels of bFGF protein and mRNA. bFGF luciferase constructs were expressed at the same level in high- or low-density cultures of glioma cells, indicating altered regulation of the bFGF gene promoter. Electrophoretic mobility shift assays showed binding of nuclear proteins to a fragment of bFGF gene promoter from bp -650 to -453. This binding was abolished by a deletion of the upstream cell-density-responsive region (bp -650 to -512). Binding was observed with nuclear extracts from subconfluent astrocytes but was reduced in extracts from confluent astrocytes. Our results indicate that induction of bFGF in astrocytes upon reduction of cell density is mediated transcriptionally by positive trans-acting factors interacting with bFGF promoter. In contrast, nuclear proteins from glioma cells bind to the promoter region from bp -650 to -453 independent of cell density. Thus, the constitutive binding of trans-acting factor(s) to the region of the bFGF promoter from bp -650 to -453 may be responsible for the continuous expression of bFGF that leads to the uncontrolled growth of glioma cells.
Resumo:
We have isolated and characterized a novel growth factor for endothelial cells, vascular endothelial growth factor B (VEGF-B), with structural similarities to vascular endothelial growth factor (VEGF) and placenta growth factor. VEGF-B was particularly abundant in heart and skeletal muscle and was coexpressed with VEGF in these and other tissues. VEGF-B formed cell-surface-associated disulfide-linked homodimers and heterodimerized with VEGF when coexpressed. Conditioned medium from transfected 293EBNA cells expressing VEGF-B stimulated DNA synthesis in endothelial cells. Our results suggest that VEGF-B has a role in angiogenesis and endothelial cell growth, particularly in muscle.
Resumo:
Septic shock is a cytokine-mediated process typically caused by a severe underlying infection. Toxins generated by the infecting organism trigger a cascade of events leading to hypotension, to multiple organ system failure, and frequently to death. Beyond supportive care, no effective therapy is available for the treatment of septic shock. Nitric oxide (NO) is a potent vasodilator generated late in the sepsis pathway leading to hypotension; therefore, NO represents a potential target for therapy. We have previously demonstrated that transforming growth factor (TGF) beta1 inhibits inducible NO synthase (iNOS) mRNA and NO production in vascular smooth muscle cells after its induction by cytokines critical in the sepsis cascade. Thus, we hypothesized that TGF-beta1 may inhibit iNOS gene expression in vivo and be beneficial in the treatment of septic shock. In a conscious rat model of septic shock produced by Salmonella typhosa lipopolysaccharide (LPS), TGF-beta1 markedly reduced iNOS mRNA and protein levels in several organs. In contrast, TGF-beta1 did not decrease endothelium-derived constitutive NOS mRNA in organs of rats receiving LPS. We also performed studies in anesthetized rats to evaluate the effect of TGF-beta1 on the hemodynamic compromise of septic shock; after an initial 25% decrease in mean arterial pressure, TGF-beta1 arrested LPS-induced hypotension and decreased mortality. A decrease in iNOS mRNA and protein levels in vascular smooth muscle cells was demonstrated by in situ hybridization and NADPH diaphorase staining in rats treated with TGF-beta1. Thus these studies suggest that TGF-beta1 inhibits iNOS in vivo and that TGF-beta1 may be of future benefit in the therapy of septic shock.
Resumo:
Clotting factor XII (Hageman factor) contains epidermal growth factor (EGF)-homologous domains and is reported to be a potent mitogen for human hepatoma (HepG2) cells. In this study, we tested whether factor XII exhibits growth factor activity on several other EGF-sensitive target cells, including fetal hepatocytes, endothelial cells, alveolar type II cells, and aortic smooth muscle cells. We found that factor XII significantly enhanced [3H]thymidine incorporation in aortic smooth muscle cells (SMCs) and all other cells tested. Tyrphostin, a growth factor receptor/tyrosine kinase antagonist, inhibited both EGF- and factor XII-induced responses. However, differences in the levels of magnitude of DNA synthesis, the observed synergism between EGF and factor XII, and the differential sensitivity to tyrphostin suggest that the EGF receptor and the factor XII receptor may be nonidentical. The factor XII-induced mitogenic response was achieved at concentrations that were 1/10th the physiologic range for the circulating factor and was reduced by popcorn inhibitor, a specific factor XII protease inhibitor. Treatment of aortic SMCs with factor XII, as well as activated factor XII, resulted in a rapid and transient activation of a mitogen-activated/extracellular signal-regulated protein kinase with peak activity/tyrosine phosphorylation observed at 5 to 10 min of exposure. Taken together, these data (i) confirm that clotting factor XII functions as a mitogenic growth factor and (ii) demonstrate that factor XII activates a signal transduction pathway, which includes a mitogen-activated protein kinase.
Resumo:
The amyloid precursor protein (APP) is a molecule centrally involved in Alzheimer disease pathology, but whose normal function is still poorly understood. To investigate the consequences of increased intracellular production of various regions of APP on cellular physiology, we stably transfected PC12 cells with the C-terminal 100 amino acids of the human APP. In eight transfected clones that express the APP(C100) protein, exposure to nerve growth factor (NGF) did not promote differentiation. Transfectants continued to divide and failed to elaborate extensive neurites, whereas control PC12 cells, mock-transfected PC12 cells, and a nonexpressing transfected cell line did develop neurites and stopped dividing after NGF stimulation. Unlike NGF treatment, treatment with basic fibroblast growth factor profoundly accelerated neurite outgrowth in transfected cells. Also, a dramatic increase in a tyrosine phosphatase activity was noted. Expression and accumulation of APP C100 protein in PC12 cells results in an abnormal response to growth factor stimulation.
Resumo:
We have studied the effects of retinoic acid (RA) and thyroid hormone (3,3',5-triiodothyronine; T3) on platelet-activating factor receptor (PAFR) gene expression in intact rats and the ability of two human PAFR gene promoters (PAFR promoters 1 and 2) to generate two transcripts (PAFR transcripts 1 and 2). Northern blotting showed that RA and T3 regulated PAFR gene expression only in rat tissues that express PAFR transcript 2. Functional analysis of the human PAFR promoter 2 revealed that responsiveness to RA and T3 was conferred through a 24-bp element [PAFR-hormone response element (HRE) located from -67 to -44 bp of the transcription start site, whereas PAFR promoter 1 did not respond to these hormones. The PAFR-HRE is composed of three direct repeated TGACCT-like hexamer motifs with 2-and 4-bp spaces, and the two upstream and two downstream motifs were identified as response elements for RA and T3. Thus, the PAF-PAFR pathway is regulated by the PAFR level altered by a tissue-specific response to RA and T3 through the PAFR-HRE of the PAFR promoter 2.
Resumo:
We report the three-dimensional structure of osteogenic protein 1 (OP-1, also known as bone morphogenetic protein 7) to 2.8-A resolution. OP-1 is a member of the transforming growth factor beta (TGF-beta) superfamily of proteins and is able to induce new bone formation in vivo. Members of this superfamily share sequence similarity in their C-terminal regions and are implicated in embryonic development and adult tissue repair. Our crystal structure makes possible the structural comparison between two members of the TGF-beta superfamily. We find that although there is limited sequence identity between OP-1 and TGF-beta 2, they share a common polypeptide fold. These results establish a basis for proposing the OP-1/TGF-beta 2 fold as the primary structural motif for the TGF-beta superfamily as a whole. Detailed comparison of the OP-1 and TGF-beta 2 structures has revealed striking differences that provide insights into how these growth factors interact with their receptors.
Resumo:
We have studied the neuropathological characteristics of the brain of rats receiving daily intracerebroventricular administration of freshly dissolved human immunodeficiency virus type 1 recombinant protein gp120 (100 ng per rat per day) given for up to 14 days. Histological examination of serial brain sections revealed no apparent gross damage to the cortex or hippocampus, nor did cell counting yield significant neuronal cell loss. However, the viral protein caused after 7 and 14 days of treatment DNA fragmentation in 10% of brain cortical neurons. Interestingly, reduced neuronal nitric oxide synthase (NOS) expression along with significant increases in nerve growth factor (NGF) were observed in the hippocampus, where gp120 did not cause neuronal damage. No changes in NGF and NOS expression were seen in the cortex, where cell death is likely to be of the apoptotic type. The present data demonstrate that gp120-induced cortical cell death is associated with the lack of increase of NGF in the cerebral cortex and suggest that the latter may be important for the expression of neuropathology in the rat brain. By contrast, enhanced levels of NGF may prevent or delay neuronal death in the hippocampus, where reduced NOS expression may be a reflection of a subcellular insult inflicted by the viral protein.
Resumo:
Binding reactions between human growth hormone (hGH) and its receptor provide a detailed account of how a polypeptide hormone activates its receptor and more generally how proteins interact. Through high-resolution structural and functional studies it is seen that hGH uses two different sites (site 1 and site 2) to bind two identical receptor molecules. This sequential dimerization reaction activates the receptor, presumably by bringing the intracellular domains into close proximity so they may activate cytosolic components. As a consequence of this mechanism it is possible to build antagonists to the receptor by introducing mutations in hGH that block binding at site 2 and to build even more potent antagonists by combining these with mutants that enhance binding at site 1. Alanine-scanning mutagenesis of all contact residues at the site 1 interface shows that only a small and complementary set of side chains clustered near the center of the interface affects binding. The most important contacts are hydrophobic, and these are surrounded by polar and charged interactions of lesser importance. Kinetic analysis shows for the most part that the important side chains function to maintain the complex, not to guide the hormone to the receptor. Hormone-induced homodimerization or heterodimerization reactions are turning out to be pervasive mechanisms for signal transduction. Moreover, the molecular recognition principles seen in the hGH-receptor complex are likely to generalize to other protein-protein complexes.
Resumo:
Transforming growth factor beta 1 (TGF beta 1)-null mice die fro complications due to an early-onset multifocal inflammatory disorder. We show here that cardiac cells are hyperproliferative and that intercellular adhesion molecule 1 (ICAM-1) is elevated. To determine which phenotypes are primarily caused by a deficiency in TGF beta 1 from those that are secondary to inflammation, we applied immunosuppressive therapy and genetic combination with the severe combined immunodeficiency (SCID) mutation to inhibit the inflammatory response. Treatment with antibodies to the leukocyte function-associated antigen 1 doubled longevity, reduced inflammation, and delayed heart cell proliferation. TGF beta 1-null SCID mice displayed no inflammation or cardiac cell proliferation, survived to adulthood, and exhibited normal major histocompatibility complex II (MHC II) and ICAM-1 levels. TGF beta 1-null pups born to a TGF beta 1-null SCID mother presented no gross congenital heart defects, indicating that TGF beta 1 alone does not play an essential role in heart development. These results indicate that lymphocytes are essential for the inflammatory response, cardiac cell proliferation, and elevated MHC II and ICAM-1 expression, revealing a vital role for TGF beta 1 in regulating lymphocyte proliferation and activation, which contribute to the maintenance of self tolerance.
Resumo:
Expression of human keratinocyte growth factor (KGF/FGF-7) was directed to epithelial cells of the developing embryonic lung of transgenic mice disrupting normal pulmonary morphogenesis during the pseudoglandular stage of development. By embryonic day 15.5(E15.5), lungs of transgenic surfactant protein C (SP-C)-KGF mice resembled those of humans with pulmonary cystadenoma. Lungs were cystic, filling the thoracic cavity, and were composed of numerous dilated saccules lined with glycogen-containing columnar epithelial cells. The normal distribution of SP-C proprotein in the distal regions of respiratory tubules was disrupted. Columnar epithelial cells lining the papillary structures stained variably and weakly for this distal respiratory cell marker. Mesenchymal components were preserved in the transgenic mouse lungs, yet the architectural relationship of the epithelium to the mesenchyme was altered. SP-C-KGF transgenic mice failed to survive gestation to term, dying before E17.5. Culturing mouse fetal lung explants in the presence of recombinant human KGF also disrupted branching morphogenesis and resulted in similar cystic malformation of the lung. Thus, it appears that precise temporal and spatial expression of KGF is likely to play a crucial role in the control of branching morphogenesis during fetal lung development.